Duration: 3 Hours

CHOICE BASED CREDIT SYSTEM

M. Sc. CHEMISTRY FIRST SEMESTER DEGREE EXAMINATION JANUARY 2025 Organic Chemistry -I

Max Marks:70

PART - A

1. Answer any TEN of the following:

(10×2= 20 Marks)

- a) Chloroacetic acid is stronger than acetic acid. Why?
- b) What are antiaromatic compounds? Give one example.
- c) Maleic acid is much stronger acid than fumaric acid. Give reason.
- d) Give an example for determination of reaction mechanism by identifying the products.
- e) Which of the following is more stable? Give reason.

- f) Give any two methods of generation of carbenes.
- g) Give any one evidence which support aryne mechanism.
- h) Identify the mechanism of hydrolysis of CH₃CI and (CH₃)₃CCI.
- 1-Bromo-3,3-dimethylbicyclo[2,2,2]octane is resistant towards reaction with ethoxide ion. Justify.
- j) What is Prelog's rule? Give an example.
- k) Assign R/S configuration for the following compound:

1) Give reason: Chair form of cyclohexane is stable than boat form.

PART - B

Answer any Five questions selecting at least one question from each unit. (5×10= 50 Marks)

UNIT - I

- 2. a) How hyperconjugation is used to explain the stability of alkenes and alkyl carbocations?
 - b) Write a note on inclusion compounds and fluxional molecules.

- 3. a) Mention the rules governing resonance. Explain resonance in carboxylate and nitroethane.
 - b) Compute the resonance energy of benzene from heat of hydrogenation. (6+4)

UNIT - II

- 4. a) Explain the methods of generation and reactions of carbanions.
 - b) Describe the isotopic labelling method for determining the reaction mechanism.

(6+4)

- 5. a) Explain the structure, generation and stability of carbon free radicals.
 - b) Write a note on cross over experiments taking suitable examples. (6+4)

UNIT - III

- a) Discuss the mechanism and stereochemistry of S_Ni reaction with appropriate example.
 - b) Explain the factors influencing the mechanism of aliphatic nucleophilic substitution reactions.
 - c) Write a note on Smiles rearrangement.

(4+3+3)

- 7. a) Write a note on i) SNAr Mechanism
 - ii) allylic nucleophilic substitution reaction
 - b) Explain the neighbouring group participation in the conversion of 2-Bromopropanoic acid to lactic acid. (6+4)

UNIT - IV

- 8. a) What is racemization? Explain various methods of producing racemic mixtures.
 - b) Write a note on determination of configuration of geometrical isomers. (6+4)
- a) Write the Newman projections for different distinct conformations of n- butane Discuss their chirality.
 - b) Convert the following structures into Fischer projections:

24MCHEH103

Reg No	

CHOICE BASED CREDIT SYSTEM

M. Sc. CHEMISTRY FIRST SEMESTER DEGREE EXAMINATION JANUARY 2025 Physical Chemistry-I

Duration:3 Hours

Max Marks:70

PART - A

1. Answer any TEN of the following:

(10×2= 20 Marks)

- a) State the assumption of local equilibria.
- b) Define the terms: i) Chemical potential ii) Fugacity
- c) The equilibrium constant K_C for reaction $H_{2(g)}$ + $S_{(g)} \rightarrow H_2S_{(g)}$ is 20.2 atm⁻¹ at 945°C and 9.1 atm⁻¹ at 1065°C. Calculate ΔH° .
- d) Give the expression for Gibb's function in terms of partition function and explain the terms.
- e) State Dulong-Petit's law and mention its drawbacks.
- f) Calculate the translational partition function of an oxygen molecule at 298K confined to a 200cm³ vessel. (Mass of oxygen = 16x3.348x10⁻²⁷ kg, k = 1.381x10⁻²³ J K⁻¹)
- g) Give the schematic representation of the RRKM theory.
- h) Give the limitations of continuous flow method of study of fast reactions.
- i) The rate of a first order reaction is $6.0 \times 10^{-5} \text{ s}^{-1}$ at 298K and $10.5 \times 10^{-4} \text{ s}^{-1}$ at 318K. Calculate activation energy of the reaction.
- j) Explain unimolecular photochemical kinetics.
- k) Explain specific acid-base catalysis with an example.
- I) Describe the Lineweaver-Burk method for determining V_{max} and K_{max} .

PART - B

Answer any Five questions selecting at least one question from each unit (5×10= 50 Marks)

UNIT - I

- 2. a) Deduce Duhem-Margules expression.
 - b) Discuss the determination of fugacity of gas by graphical method. (5+5)
- a) Explain the effect of concentration, temperature and pressure on the chemical equilibrium using suitable examples.
 - b) In the formation of ammonia gas by Haber's process, what would happen if the volume of the container is decreased? Explain. (6+4)

UNIT - II

- 4. a) Explain Bose-Einstein condensation.
 - b) Explain microcanonical, canonical and grandcanonical ensemble with suitable diagrams. (5+5)
- 5. a) Compare M-B, F-D and B-E statistics.
 - b) Prove Liouville's theorem.

(5+5)

UNIT-III

- 6. a) Explain the effect of ionic strength for reactions between ions.
 - b) Derive an expression for elementary reactions in solutions given by CTST. (5+5)
- 7. a) Derive the rate expression for a reaction $A \rightarrow X \rightarrow Z$.
 - b) Explain rate determing step taking the example of a consecutive reaction. (6+4)

UNIT-IV

- 8. a) Apply equilibrium treatment and derive the rate expression for a catalysed reaction.
 - b) Relate the activation energy profile to the reaction rate and explain how a catalyst influences the profile. (5+5)
- 9. a) Describe the experimental process to study quantum yield in photochemistry.
 - b) Explain the importance of the Frank-Condon principle in predicting photochemical behavior. (5+5)

10227	9524	125000	200104	PEN (VIII)
24M		415	C1	nA
200		11		1,140

Reg No :

CHOICE BASED CREDIT SYSTEM

M.Sc. CHEMISTRY FIRST SEMESTER DEGREE EXAMINATION JANUARY 2025 Spectroscopy I

Duration:3 Hours

Max Marks:70

PART - A

1. Answer any SEVEN of the following:

 $(2 \times 7 = 14)$

- a) Mention any two advantages of AAS over FES.
- b) What is the role of a monochromator in AAS?
- c) Why do excited molecules emit band spectra whereas excited atoms emit line spectrum?
- d) What are P, Q and R branches of rotation-vibration spectrum?
- e) What type of molecules give rotational spectra? Which molecules show rotational spectra among HCI, CO, H₂ and O₂?
- f) Write the working mechanism of the microwave oven.
- g) How will you note the progress of oxidation of 2- propanol to propanone in infrared spectroscopy?
- h) The carbonyl stretching absorptions for the following lactones are 1745, 1720, and 1760 cm⁻¹. Match the absorptions with the appropriate structure and give a reason for each choice.

 Alkyl substitution in some molecules increases wavelength but intensity of absorption may increase. Justify this statement with a suitable example.

PART - B

Answer any Four questions selecting at least one question from each unit.

 $(14 \times 4 = 56)$

UNIT - I

- a) Draw a schematic diagram of the instrumentation for AAS and explain its various parts.
 - b) List some of the advantages and disadvantages of AAS over FES.
 - c) Explain working of Graphite tube atomiser.

(5+5+4)

- 3) a) Describe the interferences which could be present in flame photometry.
 - b) Explain the procedure used for the preparation of sample used for ICP-technique.
 - c) Draw a schematic diagram of the instrumentation for ICP-AES and explain its various parts. (5+5+4)

UNIT - II

- 4) a) Discuss the Morse equation for the energy of anharmonic oscillators.
 - b) Write a note on a diatomic molecule as an anharmonic oscillator
 - c) Illustrate the selection rules for vibrational transitions in a simple harmonic oscillator and anharmonic oscillator. (5+5+4)
- a) Discuss the quantum theory of the Raman effect.
 - b) Write a note on Rayleigh scattering and Raman scattering.
 - c) Explain why N₂ is Raman active whereas some vibrations in CO₂ are Raman inactive.
 (5+5+4)

UNIT - III

- 6) a) Explain the principle and instrumentation of electronic spectroscopy.
 - b) Define the term 'chromophore'. How will you detect the presence of the carbonyl group in aldehydes and ketones?
 - c) Explain the following terms:
 - i) Bathochromic shift ii) H
 - ii) Hypsochromic shift

(5+5+4)

7) a) Rationalise the stretching vibrations (cm⁻¹) of the metal nitrogen bond in 2,2' bipyridyl and 1,10 phenanthroline complexes of the following transition metals.

M(II)	bipyridyl	o-phen
Fe(II)	423	530
Co(II)	264	288
Ni(II)	286	299
Cu(II)	297	300
Zn(II)	280	288

- b) Explain the CO stretching frequency trend for the following complexes.
 - i) [Ti(CO)₆]²⁻
 - ii) [V(CO)₆]⁻
 - iii) [Cr(CO)₆]
 - iv) [Mn(CO)₆]⁺
 - v) [Fe(CO)₆]²⁺

c) Give reasons for the given IR data:

Complex	CO stretching frequency	
Mo(CO) ₃ (PF ₃) ₃	2090, 2055	
Mo(CO) ₃ ([P(OMe) ₃] ₃	1977,1888	
Mo(CO) ₃ (triamine) ₃	1898,1758	
Mo(CO) ₃ (pyridine) ₃	1888,1746	

(5+5+4)