22MCHEH301

CHOICE BASED CREDIT SYSTEM

Reg No

M.Sc. CHEMISTRY THIRD SEMESTER DEGREE EXAMINATION DECEMBER 2023

Inorganic Chemistry - III

Duration:3 Hours

Max Marks:70

(10×2= 20 Marks)

PART - A

1. Answer any TEN of the following :

- a) Explain Irreducible representations and give any two of its properties.
- b) How many symmetry elements does BF3 have and what are they?
- c) Mention the subgroups present in a water molecule.
- d) Predict the point group of Diborane.
- e) Predict the point group of N₃⁻
- f) Identify the point group of CHCl₃ & justify the answer.
- g) Based on CFT, Draw the energy level diagram and write the electronic configuration of the central metal ion [Fe(CN)₆]⁴⁻
- h) On the basis of CFT, explain the following, giving appropriate reasons to your answer: Both [Fe(CN)₆]³⁻ and [Fe(H₂O)₆]³⁺ appear colorless in dilute solutions.
- i) Give the number of unpaired electrons in a strong and weak octahedral field for Mo²⁺
- i) Differentiate between inert and labile complexes.
- k) The rates of aquation of the complexes increases in the following order: [Co(NH₃)₅Cl]²⁺ > [Co(en)(NH₃)₂Cl]²⁺ > [Co(en)₂(NH₃)Cl]²⁺ > [Co(tetraene)Cl]²⁺ Give reason.
- Give evidence to suggest that the substitution in square planar complexes proceeds through S_N2 mechanism.

PART - B

Answer any Five questions selecting at least one question from each unit (5×10= 50 Marks)

UNIT-I

2. a) Explain all the symmetry elements of staggered and eclipsed ethane.

b) How do the order and class of point groups differ for H2O and NH3 molecules?

(5+5)

3. a) Generate the RR's of i) cis planar H_2O_2 and decompose into IRR's

	X	G (4)	e,(22)	9(92)	Innur, rotations	quadratic	
A1	1	1	1	1	X	2, 1, 2	
A2	1	1	-1	-1	Ra	XY.	
B1	1	-1	1	-1	z.Ry	XX	
B2	1	-1	-1	1	y. R.	ya	

b) Derive the transformation matrix for S_4 rotation in the anticlockwise direction representing a rotation of 90° about the z-axis followed by reflection along the horizontal plane and find out the character of the matrix. (5+5)

UNIT - II

4. a) Deduce the reducible representations of BF_3 by using the following character table:

	E	2C,	3C'2	ωΡ	2S3	30,
A'ı	1	1	1	1	1	1
A'2	1	1	-1	1,	1	-1
E	2	. 1. ·	0	2	-1	0
A"1	1	1	1	-1	-1	I
A"2	1	1	1	-1	-1	1
E"	2	4	0	-2	1	0

b) Find the vibrational and Raman active modes for m-dichlorobenzene with the help of the

follo	wing Cl	haracter ta	ble:	,	•	
C _{2v}	E	C _{2z}	oxz	σ _{yz}		
A ₁	1	. 1	1	1 .	z	x^2 , y^2 , z^2
A ₂	. 1	1	·-1 ·	-1	Rz	xy
Б ₁	1.	-1	1 .	-1 .	x, Ry	xz ·
B ₂	1	-1	-1	1	y, R _x	yz

(5+5)

5. a) List the symmetry elements and hence the point groups of the following:

i) Methane ii) benzene

b) Find the IR, Raman active modes of vibrations in H_2O by using the following character

C _{2v}	Ė	C _{2z}	σ _{xz}	σ _{yz}		
A ₁	1 .	1	1	1	Z	x^2 , y^2 , z^2
A2.	1	1	-1	-1	Rz	xy
B ₁	1	· -1	1	-1	x, R _y	xz
.B ₂	1 .	-1	-1	1	y, R _x	yz

UNIT - III

a) What is crystal field theory? How does it differ from the valence bond theory?
b) [NiCl₄]²⁻ ion is paramagnetic tetrahedral but [PdCl₄]²⁻ and [PtCl₄]²⁻, ions are diamagnetic square planar: Give reason.

- c) How will you account for the non-existence of tetrahedral complexes with low spin configurations? (4+3+3)
- 7. a) Discuss the sigma and pi metal ligand bonding in transition metal complexes with reference to tetrahedral transition metal complexes
 - b) Explain the ionic radii of divalent metal cations of the first transition series using CFT

UNIT - IV

a) Explain and predict the order of the rate of electron transfer in the following:
 i) [Cr(H₂O)₆]²⁺ + [Co(NH₃)₆]³⁺ → [Cr(H₂O)₆]³⁺ + [Co(NH₃)₆]²⁺

i) $[Cr(H_2O)_6]^{2+} + [Co(NH_3)_5(H_2O)]^{3+} \rightarrow [Cr(H_2O)_6]^{3+} + [Co(NH_3)_5(H_2O)]^{2+}$

b) Differentiate between complimentary and non-complimentary reactions with examples.

(6+4)

(5+5)

(6+4)

9. a) Explain the applications of Trans effect series.

b) Explain polarisation theory to explain trans effect.

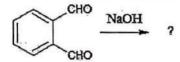
(5+5)

22MCHEH302

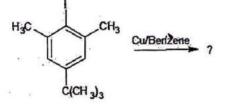
CHOICE BASED CREDIT SYSTEM

M.Sc. CHEMISTRY THIRD SEMESTER DEGREE EXAMINATION DECEMBER 2023

Organic Chemistry - III


Duration:3 Hours

PART - A


1. Answer any TEN of the following :

(10×2= 20 Marks)

a) Predict the product and name the following reaction:

- b) What is Prevost reaction? Give an example.
- c) Predict the product and name the reaction:

- d) How will you convert alcohol to nitroso alcohol? Name the reaction.
- e) Complete the following reaction:

· ••

- f) What is meant by photosensitization?
- g) How are cycloaddition reactions classified? Explain with an example.
- h) Comment on the stereochemistry of Pericyclic reactions with an example.
- i) Illustrate with the help of an example aza-Cope rearrangement.
- i) What is Baker-Venkataraman rearrangement? Give an example.

Max Marks:70

.....

Reg No :

. _____

k) Predict the product and name the reaction for the following.

3C (CH₃ 2. NaOE ?

1) Give the reaction for the conversion of cyclobutane carboxylic acid to cyclobutylamine.

PART - B

Answer any Five questions selecting at least one question from each unit (5×10= 50 Marks) UNIT - I

- 2. a) Discuss the mechanism and synthetic applications of Stobbe condensation.b) Write a note on Darzen condensation. (6+4)
- 3. a) Write a note on: i) Chichibabin reaction ii) Benzoin condensation
 - b) Complete the following reaction. Propose a suitable mechanism:

UNIT - II

(6+4)

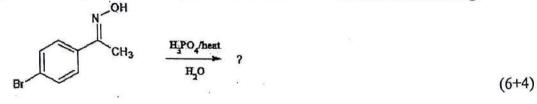
(5+5)

- 4. a) Discuss the mechanism and applications of Paterno-Buchi reaction.
 - b) Write a note on the photochemical reaction in arenes.
- 5. a) Explain the various photophysical phenomenons involved in a photoexcited molecule.
 b) Discuss the Photooxidation reaction. (6+4)

UNIT - III

a) Explain with the help of F.M.O method of analysis, whether a suprafacial sigmatropic [1, 5] carbon shift is thermally or photochemically allowed.

- b) Draw the Molecular orbitals of pentadienyl and allyl free radical. (5+5)
- 7


6.

- a) Explain the Frontier molecular orbital theory for analysing an electrocyclic reaction by taking any one example.
- b) With the help of correlation diagram, show that the con-rotatory interconversion of hexatriene to cyclohexadiene is photochemical. (5+5)

UNIT - IV

8. a) Discuss the mechanism of Curtius and Hofmann rearrangements.

b) Predict the product and explain the reaction mechanism for the following.

9. a) Explain the mechanism and synthetic application of Benzil-benzilic acid rearrangement.

b) Describe the mechanism for conversion of neopentyl alcohol to 2- methyl- 2- butene.

c) What is Semipinacol rearrangement? Explain with an example. (4+3+3)

Reg No

CHOICE BASED CREDIT SYSTEM

M.Sc. CHEMISTRY THIRD SEMESTER DEGREE EXAMINATION DECEMBER 2023

Spectroscopy II

Duration: 3 Hours

Max Marks:70

 $(2 \times 7 = 14)$

PART - A

1. Answer any SEVEN of the following :

a) Write the number of signals in ¹H NMR for the following:

a) $(CH_3)_2CH-Cl$ b) $(CH_3)_2C=CH_2$ c) p-Xylene d) $CH_3COOC_2H_5$

- b) How to distinguish between cis- and trans-alkenes using NMR spectroscopy?
- c) Give reason: Why aromatic protons come into resonance δ 1.5-2 ppm downfield from the corresponding olefenic signals?
- d) Predict the important peaks in the mass spectrum of butanal.
- e) What are metastable peaks? Give example.
- f) Explain fragmentation in acetophenone.
- g) Why isn't orbital angular momentum is not considered while calculating the magnetic moments of 3d transition elements?
- h) With a neat diagram, explain the effect of temperature on ferromagnetic substances.
- i) Draw the Orgel diagram of Cr^{2+} in aqueous solution.

PART - B

Answer any Four questions selecting at least one question from each unit. $(14 \times 4 = 56)$

UNIT - I

2) a) Describe the concept of decoupling techniques in ¹³C NMR spectroscopy.

b) Proton decoupled and off resonance ${}^{13}C$ NMR data for three isomeric alcohols with molecular formula C₄H₁₀O is given below:

A (δ ppm): 31 (q), 69.5 (s)

B (δ ppm): 11 (q), 22 (q), 31 (t), 69.5 (d)

C (δ ppm): 19 (q), 31 (d), 69.8 (t)

Identify alcohols, assign peaks to carbon atoms.

c) Discuss the theory of spin-spin coupling in ¹H NMR spectroscopy.

(5+5+4)

 a) What is chemical shift? Discuss the various factors affecting the chemical shift in ¹H NMR spectroscopy.

- b) Explain effect of restricted rotation and chemical exchange phenomenon in ¹H NMR spectroscopy.
- c) Explain relaxation processes in NMR spectroscopy. (5+5+4)

UNIT - II

- 4) a) Explain McLafferty's rearrangement with suitable example.
 - b) Predict the relative intensities of molecular ion and isotope peaks for a compound with molecular formula C₅H₉Br₃
 - c) Write a note on Index of Hydrogen Deficiency. Give its significance in mass spectrometry. Calculate IHD of Quinoline. (5+5+4)
- 5) a) How will you distinguish between pentane and 2-methylbutane on the basis of mass spectrometry?
 - b) With a neat diagram, explain the instrumentation of a double focused mass spectrometer.
 - c) Discuss gas phase ionization techniques used in mass spectroscopy. Write their advantages and disadvantages. (5+5+4)

UNIT - III

- 6) a) Discuss the different types of charge transfer spectra and explain the charge transfer spectrum of [Co(NH₃)X]²⁺ when X is substituted by different halides.
 - b) Draw Tanabe Sugano diagram of Fe²⁺ metal ion dissolved in aqueous solution in an octahedral environment.
 - c) LMCT transitions in tetraoxoanions such as MnO_4^- and CrO_4^{2-} are prominent: Explain.

(5+5+4)

- 7) a) Construct microstate table for [V(H₂O)₆]³⁺& derive free ion terms present in a complex.
 b) Derive term symbol for Mn³⁺ ion in Mn(H₂O)₆]²⁺ complex and draw the Orgel diagram of it.
 - b) Calculate spin only magnetic moment of $Fe^{3+} \& Cr^{2+}$ (5+5+4)

CHOICE BASED CREDIT SYSTEM

M.Sc./M.A./M.COM THIRD SEMESTER DEGREE EXAMINATION DECEMBER 2023

Environmental Pollution and Remediation

Duration:3 Hours

PART - A

1. Answer any SEVEN of the following :

- a) Write any two major and minor components of the atmosphere.
- b) Why is soil called a store house?
- C) Give four examples of particulate pollutants.
- d) What is soft water?
- e) What makes sea water salty?
- Define water pollution. f)
- Write any two roles of inorganic material in soil. g)
- h) Name four anthropogenic activities that lead to soil pollution.
- i) Write any two effects of soil pollution by industrial pollutants.

PART - B

Answer any FOUR questions selecting at least one question from each unit.

 $(14 \times 4 = 56)$

UNIT-I

- What is Greenhouse effect? Explain its effects on atmosphere? 2) (14)
- 3) a) Explain the sources of noise pollution and ways to control it. b) Explain mechanisms of ozone formation and ozone depletion. (7+7)

UNIT - II

a) Draw a schematic diagram of water distillation unit and explain water 4) distillation.

b) Discuss the steps in primary water treatment.

Max Marks:70

 $(2 \times 7 = 14)$

(7+7)

5) a) Explain chlorination.

b) Describe the role of bleaching powder as disinfectant.

c) What is dechlorination?

(5+5+4)

UNIT - III

a) Why is soil monitoring important? What are the important factors monitored?b) What are the properties of good sand?

c) Explain anammox. (5+5+4)

7) a) What are the different types of composting? Explain.

b) Discuss the importance of reforestation and afforestation. (7+7)
