CHOICE BASED CREDIT SYSTEM SEMESTER SCHEME B.Sc. SECOND SEMESTER DEGREE EXAMINATION AUGUST 2022 PHYSICS

Electricity and Magnetism

Duration: 2 Hours Max Marks:60

PART - A

Answer any five questions, selecting minimum of one question from every unit: $5\times9=45$

UNIT I

- 1 a) Write a note on conductors.
 - b) Define capacitance. Derive an expression for capacitance of a parallel plate capacitor. (2+7)
- 2 a) What is a circuit? Define circuit element.
 - b) Obtain an expression for the charge on the capacitor when it is discharged through series LCR circuit. (2+7)

UNIT II

- 3 a) What is an equipotential surface? Can two equipotential surfaces intersect?
 - b) Explain the potential associated with infinite plane sheet of charges. (2+7)
- 4 a) What are magnetic substances? Name the type of force present in them.
 - b) Derive an expression for coefficient of mutual inductance of two solenoids.(2+7)

UNIT III

- 5 a) Define quality factor of a series LCR circuit and write an expression for the same.
 - b) What is current magnification in a parallel LCR circuit? Arrive at an expression for the current magnification and show that it is equal to the quality factor at resonance. (2+7)
- 6 a) Obtain the phase relation between current and voltage in an ac circuit containing pure capacitance.
 - b) What is a high pass filter? Explain how a CR circuit can be used as a high pass filter and obtain the expression for cut-off frequency. (2+7)

UNIT IV

- 7 a) State and explain Gauss' divergence theorem in electrostatics.
 - b) Write Ampere's circuital law in vector form and show that it is inconsistent with the equation of continuity when displacement current is considered. (2+7)
- 8 a) What is paramagnetism? Give an example for paramagnetic material.
 - b) What is normal dispersion? Derive Cauchy's constants for normal dispersion.

(2+7)

PART - B

Answer any three questions:

 $3 \times 5 = 15$

- 9 A capacitor of capacitance of $2\mu F$ is first charged and then discharged through a resistance of $1M\Omega$. Calculate the time in which the charge on the capacitor will fall to 50% of its initial value.
- 10 Two positive point charges of $12X10^{-10}$ C and 8×10^{-10} C are placed 10cm apart. Find the work done in bringing the two charges 4cm closer.
- 11 Calculate the cut off frequency for a simple high pass filter consisting of an 100 pF capacitor connected in series with a 280 K Ω resistor. Also design a RC high pass filter for a cut off frequency 1.5 kHz using a capacitor of 0.2 μ F.
- 12 Show that $\phi = x^2 2y^2 + z^2$ and $F = x^2 + y^2 2z^2$ satisfy Laplacian equation.

21CHEC201	Reg No	:	
-----------	--------	---	--

CHOICE BASED CREDIT SYSTEM SEMESTER SCHEME B.Sc. SECOND SEMESTER DEGREE EXAMINATION AUGUST 2022 CHEMISTRY

Inorganic and Physical Chemistry - I

Duration:3 Hours

PART - A

I. Answer any Six from the following:

(2×6= 12 Marks)

Max Marks:60

- 1. What is shielding effect? Which orbitals show greatest shielding effect?
- 2. State Hund's rule of maximum multiplicity.
- Define Van der Waal radius.
- 4. Give example for an acidic oxide and a basic oxide.
- State the law of equipartition of energy.
- 6. What is Boyle temperature? Give its expression.
- 7. Draw a unit cell and label it.
- 8. Give two applications of liquid crystals.

PART - B

II. Answer any SIX of the following choosing at least one question from each unit: (6×8= 48 Marks)

UNIT I

- a. What is quantum number? Name the different quantum numbers and give their significance.
 - b. Explain why orbitals like 1p, 2d and 3f are not possible.
 - c. Draw radial probabity distribution curves for 1s, 2s and 3s orbitals. (4+3+3)
- 10 a. Write the postulates of Bohr's atomic theory. What are its limitations?
 - b. Derive de Broglie equation and give its significance.
 - c. Write Schrodinger's wave equation and explain each of the terms. (4+3+3)

UNIT II

- 11. a. How does the ionisation energy vary along the period and down the group in p block elements.
 - b. What are the factors affecting ionisation energy?
 - c. Write a note on interstitial carbides. (4+3+3)
- 12 a. What are the applications of electronegativity?
 - b. Give an account of halides of Group 13.
 - c. What is Paulings scale of electronegativity? (4+3+3)

UNIT III

- 13. a. Derive expressions for critical constants T_c , P_c and V_c in terms of van der Waals constants a and b.
 - b. The critical temperature and critical pressure of oxygen are -118⁰C and 49.7 atm. If R= 0.082dm³atm/K/mol, Calculate van der Waal's parameters.
 - c. How is refractive index determined by Abbe's refractometer? (4+3+3)
- 14 a. Write Van der waal's equation of state for n moles of real gas and write the significance of the van der waal constants a and b.
 - b. The reduced volume and temperature of a gas are 12.5 and 0.8. What will be its pressure if its critical pressure is 44 atm?
 - c. Write a short note on Parachor. (4+3+3)

UNIT IV

- 15. a. Define Miller indices. Calculate the Miller indices of a plane which makes intercepts 3a and is parallel to the y and z axis.
 - b. Define plane of symmetry and centre of symmetry.
 - c. Name the different Bravais lattices of a cube. (4+3+3)
- 16 a. Derive Bragg's equation.
 - b. State and explain Nernst distribution law.
 - c. Explain the application of liquid crystals in LCD. (4+3+3)

CHOICE BASED CREDIT SYSTEM SEMESTER SCHEME B.Sc. SECOND SEMESTER DEGREE EXAMINATION AUGUST 2022

MATHEMATICS

Number Theory-II, Algebra-II, Calculus-II

Duration:2 Hours Max Marks:60

PART - A

I. Answer any SIX of the following:

6×2= 12

- a. Find the value of $\phi(36000)$.
- b. Find the sum of positive integers less than 210 and relatively prime to 210.
- c. Let G=Z. Define st by ast b=a+b-ab . Check whether st is commutative and associative.
- d. Show that for any subset A of G, the normalizer N(A) of A is a subgroup of G.
- e. Find the domain of definition of the functions:

(i)
$$z = f(x,y) = \sqrt{x^2 + y^2 - 4}$$
 (ii) $z = f(x,y) = \log(x+y)$

- f. If $u=x^2-y^2, x=2r-3s+4, y=-r+8s-5$, then find $rac{\partial u}{\partial r}$.
- g. Evaluate $\int_0^4 \int_0^y dx dy$.
- h. Evaluate $\iiint_S xy\,dV$ if S is the rectangular parallelopiped in the first octant bounded by the co-ordinate planes and the planes x=2,y=3 and z=4.

PART - B

II. Answer any TWO of the following:

 $2 \times 6 = 12$

- a. If p is a prime and $p \nmid a$ then prove that $a^{p-1} \equiv 1 \pmod{p}$.
- b. Determine whether 13 is a prime by deciding whether $12! \equiv -1 \pmod{13}$.
- c. Represent $\frac{170}{53}$ as a simple continued fraction.

PART - C

III. Answer any TWO of the following:

 $2 \times 6 = 12$

a. Let G be a finite group of even order. Prove that there exists an element in G other than the identity element whose inverse is itself.

- b. Prove that a non-empty subset H of a group G is a subgroup of G if and only if whenever $a,b\in H\implies a\cdot b^{-1}\in H$.
- c. Prove that any subgroup of a cyclic group is cyclic.

PART - D

IV. Answer any TWO of the following:

 $2 \times 6 = 12$

- a. If $u=rac{x^2y^2}{x^2+y^2}$, show by Euler's theorem that $xrac{\partial^2 u}{\partial x^2}+yrac{\partial^2 u}{\partial y\partial x}=rac{\partial u}{\partial x}$.
- b. Find the second order partial derivative of $\tan (\tan^{-1} x + \tan^{-1} y)$.
- c. Determine the relative extrema of $f(x,y)=x^2-4xy+y^3+4y$ if there are any.

PART - E

V. Answer any TWO of the following:

 $2 \times 6 = 12$

- a. Evaluate $\iint\limits_R x^2 \sqrt{9-y^2} \,dA$, where R is the region bounded by the circle $x^2+y^2=9$.
- b. Find the area of the surface cut from the plane 2x + y + z = 4 by the planes x = 0, x = 1, y = 0 and y = 1.
- c. Evaluate $\int\limits_C 4xydx + (2x^2-3xy)dy$, if the curve C is the line segment from (-3,-2) to (1,0).

Reg No

CHOICE BASED CREDIT SYSTEM SEMESTER SCHEME B.Sc. SECOND SEMESTER DEGREE EXAMINATION AUGUST 2022 STATISTICS

Probability and Distributions - I

Duration:2 Hours

Max Marks:60

.....

Answer any THREE of the following:

 $(3 \times 2 = 06)$

- 1. Define Bernoulli distribution and give an example for it.
- 2. If X has Uniform distribution over the range (0,1), find the mean and the variance.
- 3. What is the difference between positive and negative frequencies?
- 4. Explain ultimate classes.
- 5. What is the use of following functions: (i) sort(x) (ii) cumsum(x)

Answer any FOUR of the following in not more than a page each:

 $(4 \times 6 = 24)$

- 6. Obtain the mean and variance of Negative Binomial distribution.
- 7. Define Binomial distribution. Find the variance assuming mean.
- 8. Obtain the CGF of Normal distribution.
- 9. Define Beta distribution of the second kind. Find its mean and variance.
- 10. If $X_1 = Y_1 + Y_2$, $X_2 = Y_2 + Y_3$ and $X_3 = Y_1 + Y_3$ where Y_1 , Y_2 and Y_3 have zero mean, having variance=1 and they are uncorrelated variables, then find $R_{3,12}$.
- 11. Write a programme to obtain the Karl Pearson's coeffcient of skewness from the following data:

Size of item 6 7 8 9 10 11 12 Frequency 3 6 10 14 8 5 4

Answer any THREE of the following in not more than two page each: $(3\times10=30)$

- 12. Find the mode of Poisson distribution.
- 13. Define Exponential distribution with parameter θ and obtain the first four central moments of this distribution and comment on the kurtosis.
- 14. Define Gamma distribution with parameter n and obtain the first four central moments of this distribution and comment on the skewness and kurtosis.
- 15. Derive the regression equation of X_1 on X_2 and X_3 .
- 16. Define partial correlation between X_1 and X_2 and derive its formula.

21CSCC201 Reg No :

CHOICE BASED CREDIT SYSTEM SEMESTER SCHEME B.Sc. SECOND SEMESTER DEGREE EXAMINATION AUGUST 2022 COMPUTER SCIENCE

Computer Science Theory II: Data Structures using C

Duration:2 Hours Max Marks:60

PART A

Answer any FIVE questions:

 $(5 \times 2 = 10)$

- 1) What is a Data Structure?
- 2) What is a memory efficient Doubly Linked List?
- 3) What is the advantage of using Stacks?
- 4) What is an input restricted queue with respect to a deque?
- 5) What do you understand by degree of a node?
- 6) What is an acyclic graph? Give example.

PART B

Answer any FIVE questions:

 $(5 \times 6 = 30)$

- 7) What is a recursive function? Explain the factorial calculation problem using recursion.
- 8) How can you alter the size of a block in memory? Explain with an example.
- 9) Write the algorithm for insertion sort.
- 10) Explain the array representation of a Queue.
- 11) Define a Complete Binary Tree. How is it different from a Complete Binary Tree? Explain.
- 12) Write a program to implement stack using arrays.

PART C

Answer any TWO questions:

 $(2 \times 10 = 20)$

- 13) (a) What is a linked list? Explain different types with a diagram.
 - (b) Explain queue as a linked list.
- 14) (a) Write an algorithm for solving matching of nested parenthesis.
 - (b) Convert the infix string : (A+(B+C*(D+E))+F/G) to postfix.
- 15) (a) Write the rules for In-order and Post-order traversal.
 - (b) Construct a binary search tree using the following traversal.

Pre-Order : ABDGEHIJCF In-order : DGBEIHJACF

Reg No

CHOICE BASED CREDIT SYSTEM SEMESTER SCHEME B.Sc. SECOND SEMESTER DEGREE EXAMINATION AUGUST 2022

ZOOLOGY

Biochemistry and Physiology

Duration:2 Hours Max Marks:60

SECTION - A

Answer the following strictly observing the internal choice provided:

4×5=20

UNIT 1

1) Write short note on Zwitter ion.

OR

2) DefineTriglyceride. Explain the structure of Triglycerides.

UNIT 2

3) Explain breifly the process of Gluconeogenesis.

OR

4) Explain Omega oxidation of fatty acids.

UNIT 3

5) Give a comprehensive account of respiratory pigments in animals.

OR

6) Explain protein digestion in small intestine.

UNIT 4

7) With respect to humans explain ornithine cycle.

OR

8) Describe the anatomy of Pineal gland.

SECTION - B

Answer the following strictly observing the internal choice provided:

4×10=40

UNIT 1

9) Explain in detail the Tertiary structure of proteins.

OR

10) Give a detailed account on Enzyme inhibition.

UNIT 2

11) Write a detailed account on Metabolism of Nucleotides.

OR

12) Give a detailed account on Citric acid cycle.

UNIT 3

13) With a neat labeled diagram describe the internal structure of human heart.

OR

14) Write an account on MNS blood group system.

UNIT 4

15) Explain the ultra structure of striated muscle fibre with suitable diagram.

OR

16) Define action potential. Explain the characteristic behaviour of a neuron during resting potential.

21MICC201	Reg No	:	484711*7117********
L HINGUZU I	ixey ivo	•	48471

CHOICE BASED CREDIT SYSTEM SEMESTER SCHEME B.Sc. SECOND SEMESTER DEGREE EXAMINATION AUGUST 2022 MICROBIOLOGY

Microbial Biochemistry and Physiology

Duration:2 Hours Max Marks:60

SECTION - A

Answer the following strictly observing the internal choice provided:

 $4 \times 5 = 20$

<u>UNIT 1</u>

1) Comment on non-covalent bond.

OR

2) Comment on the hydrophilic interactions of water.

UNIT 2

3) Write the structure of sucrose.

OR

4) Explain the functions of proteins.

UNIT 3

5) Explain MPN.

OR

6) Classify bacteria on the basis of hydrogen ion concentration.

UNIT 4

7) Write short notes on any one photosynthetic pigment of prokaryotes.

OR

8) Explain oxidation-reduction reactions with a suitable example.

SECTION - B

Answer the following strictly observing the internal choice provided:

4×10=40

<u>UNIT 1</u>

9) Give a detailed account of the different elements that are major to life.

OR

10) Explain in detail about hydrogen ion concentration and pH.

UNIT 2

11) Describe the structure of Vitamin D.

OR

12) Give a detailed account of lipids.

UNIT 3

13) Explain active transport. Add a note on its significance.

OR

14) Explain Na⁺ K⁺ ATPase.

UNIT 4

15) Explain dark reaction with a suitable example.

OR

16) Give a detailed account of glycolysis.

21	В	OT	C20	1
----	---	----	-----	---

Reg No

CHOICE BASED CREDIT SYSTEM SEMESTER SCHEME **B.Sc. SECOND SEMESTER DEGREE EXAMINATION AUGUST 2022**

BOTANY

Diversity of Non-flowering Plants

Duration:2 Hours

Max Marks: 60

SECTION - A

Answer the following strictly observing the internal choice provided:

4×5=20

UNIT 1

1) Describe the thallus structure in Nostoc.

OR

2) Write a note on algal bloom and toxins.

UNIT 2

3) Describe asexual reproduction in Riccia.

OR

4) Describe the structure of of T.S of Marselia rhizome.

UNIT 3

5) Write the ecological and economic importance of pteridophytes.

OR

6) Give the account of classification of gymnosperm by Sporne.

UNIT 4

7) Write a note on any two methods used to study fossils.

OR

8) What are

a) Compressions b) Impressions.

SECTION - B

Answer the following strictly observing the internal choice provided: 4×10=40

<u>UNIT 1</u>

9) Write a note on carpogonium in Polysiphonia.

OR

10) Explain pigmentation in algae.

UNIT 2

11) Explain in detail about the capsule structure of Funaria.

OR

12) Describe the structure of sporophyte of Pteris and explain its sex organs.

UNIT 3

13) Explain the primary structure of Gnetum stem with a neat labeled diagram.

OR

14) Explain the economic importance of gymnosperms.

UNIT 4

15) How do plants get evolved through geological time scale? Explain.

OR

16) Write a note on fossil bryophytes.