Asia Historian

MCHE H 403

REG.NO.....

CHOICE BASED CREDIT SYSTEM SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JANUARY 2021 M.Sc. CHEMISTRY

PHYSICAL CHEMISTRY THEORY III

Time: 3 Hrs

Max. Marks: 70

PART - A

I Answer any TEN of the following

(2×10=20)

- a) Calculate the ionic strength of 0.25 molar K₂SO₄ solution.
- b) Write the limitations of Walden rules.
- c) Compare the ion-solvent interactions of i) 0.1M aqueous solution of KCl and ii) 0.1M Al₂(SO₄)₃ solution.
- d) Account on the effect of light on semiconductor interface.
- e) Define membrane hydrolysis.
- f) What is meant by electronic factor in electrocatalysis?
- g) Write Lippmann equation and mention the terms involved in it.
- h) Why batteries produce less useful energy at low temperatures? Give reasons.
- i) Wire mesh corrodes faster at joints. Why?
- j) What is meant by anodic protection?
- k) Define exchange current density?
- 1) Why stripping voltammetry is a two-step analysis?

PART B

Answer any FIVE questions selecting atleast ONE question from each unit. (10×5=50)

UNIT - I

- a) Describe Hittart's theoretical device to show that though most of the ions differ largely in their motilities, their equivalent amounts are discharged on electrolysis at the appropriate electrodes.
 - b) Briefly explain the role of ions on electrokinetic phenomenon.
 - c) Account for the ion transport phenomena across membranes.

(4+3+3)

- 3) a) Calculate the mean ionic activity coefficient of 0.01 molar sodium chloride solution.
 - b) Write a note on zeta potential.
 - c) Write the Debye-Huckel limiting law and explain the significance of each term in it.
 (4+3+3)

UNIT - II

4) a) Write a note on semiconductor electrolyte interface.

- b) Discuss the EMF method for the determination of liquid junction potential. How liquid junction potential can be eliminated?
- c) How is the electrocatalytic activity of metals determined for hydrogen evolution reaction? (4+3+3)
- 5) a) Explain the construction and working principle of photogalvanic cells.
 - b) Write an explanatory note on the mechanism of electrocatalysis.

(6+4)

UNIT - III

- 6) a) Describe Helmholts- Perrin model for an electrical double layer. Mention its limitations.
 - b) Explain the construction & working of molten carbonate fuel cell. Why is it preferred to alkaline fuel cell? (5+5)
- 7) a) Discuss the structure of electrified interfaces.
 - b) Describe the construction and working of lead-acid battery.

(5+5)

UNIT - IV

- 8) a) Write an account on the thermodynamics of corrosion.
 - b) Write a comparative note on types of corrosion.

(5+5)

- 9) a) Explain how corrosion can be controlled by sacrificial anode.
 - b) What are corrosion inhibitors? Classify different types of inhibitors with examples.
 - c) Describe the measurement of corrosion rate by lineal polarisation method. (3+4+3)

Asuir R. excess

MCHE H 401

RFGN	0
TATA	O.,

CHOICE BASED CREDIT SYSTEM FOURTH SEMESTER M.Sc. DEGREE EXAMINATION JANUARY 2021 M.Sc. CHEMISTRY

ORGANOMETALLIC AND BIOINORGANIC CHEMISTRY

Time: 3 Hrs

Max. Marks: 70

PART - A

I Answer any TEN of the following:

 $(2\times10=20)$

- a) .How are different ligands in organometallic compounds classified?
- b) Ferrocene is more aromatic than benzene. Substantiate with two chemical reactions.
- c) π acceptor ligands are known to stabilise low oxidation state of metals Explain.
- d) What is water gas shift reaction?
- e) What are the merits and demerits of homogeneous catalysis and heterogeneous catalysis?
- f) Illustrate the use of Zinc dialkyes in organic synthesis with two examples.
- g) What are the biological functions of cytochrome P450.
- h) Compare oxygen binding property of haemocyanin and haemoerythrina.
- i) Name any two metal complexes used as drugs and their functions.
- j) Explain the role of catalase in bio-systems.
- k) What are essential and trace metals? Mention the biological functions of K⁺.
- 1) Name the two metalloprotiens which comprise ritrogenase and explain their function.

PART B

Answer any FIVE questions selecting any ONE question from each unit

 $(10 \times 5 = 50)$

UNIT - I

- 2) a) Discuss the bonding in Fe₂(CO)₉ and Co₂(CO)₈. How is infrared spectroscopy useful in understanding the coordination modes of CO ligands to metals?
 - b) Discuss the structure and bonding in metal-alkene complexes. Comment on carbon-carbon double bond length. (6+4)
- a) Discuss the various types of bonding in metal nitrosyls and their identification by IR spectra.
 - b) Give any two methods for the preparation of metal-arene complexes. Explain their reactions. (5+5)

UNIT - II

- 4) a) What is Fischer Tropsch reaction. Explain the mechanism of the reaction.
 - b) What are Grignard reagents? Give methods of preparation and important applications of Grignard reagents. (5+5)
- 5) a) Discuss the mechanism of carboxylation and isomerisation reactions catalysed by organometallics.
 - b) Explain the preparation and applications of organo aluminium compounds. (6+4)

UNIT - III

6) a) How is Cobalt - Carbon bond in Vitamin B₁₂ stabilised? Discuss the structure and biological importance. b) What is active transport? With neat labelled diagram discuss the transportation of Na⁺/K⁺ (5+5)ions across the cell membrane. 7) a) Explain the structural features and biological role of carboxy peptidase. b) Write short notes on i) biochemical functions of superoxide dismutase (4+6)ii) ionophores UNIT – IV 8) a) Explain Bohr's effect and cooperativity in Haemoglobin. b) Discuss the iron storage and transport phenomenon in ferritin and transferring. (4+6)9) a) Discuss the structure and biological functions of myoglobin. b) Write notes on i) Iron - sulphur proteins (4+6)ii) Metal toxicity
