CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION **OCTOBER 2012 STATISTICS**

DISTRIBUTIONS AND ESTIMATION THEORY				
Time: 3 Hrs PART - A	x. Marks: 80			
Answer any TEN of the following:	2X10=20			
1. a) If 'X' has uniform distribution over the range $(0, \theta)$, find the M.G.F.				
b) Define Cauchy distribution with parameters λ and θ .				
c) Obtain the mean of X with p.d.f. $f(x) = \theta e^{-x\theta}$ $x > 0$ $\theta > 0$				
d) Write down the density function of Beta distribution of second kind				
e) If Z is a S.N.V., write down the density function of \mathbb{Z}^2				
f) If $F(x)$ is the distribution function of X find the distribution of $Y = F(x)$				
g) Find the distribution function of n th order statistics.				
h) Write down the p.d.f. of F variate with (n ₁ , n ₂) d.f				
i) If T is unbiased for θ , show tha \sqrt{T} is biased for $\sqrt{\theta}$.				
j) Define consistency of estimator.	· .			
k) If $x_1 x_2 x_n$ is a random sample U(0, θ) find the moment estimator of θ .				
I) What is meant by interval estimation?				
PART – B	10.0.00			
Answer any TWO of the following:	10x2=20			
2. a) State and prove lack of memory property of exponential distribution.				
b) Derive the MGF of Gamma distribution with parameters a & n.	(5+5)			
3. a) Show that linear combination of independent Normal variates is a Normal	variate.			
b) Derive the expression for even order central moments of Normal distribution	ion. (5+5)			
4. a) Define Beta variate of first kind. Derive its mean and variance.				
b) Find median of Cauchy distribution with parameter λ and θ .	(5+5)			

10x2=20

- 5. a) If x and y are independent exponential variates with respective means θ_1 and θ_2 find the distribution of x + y.
 - b) If x and y are independent gamma variates with respective parameters m and n. Find the distribution of $\frac{x}{x+y}$ (5+5)
- 6. a) Derive the p.d.f. of Chi-square variates with 'n' degrees of freedom.
 - b) Obtain mean and variance of t variate. (5+5)
- 7. a) Derive the mean of F distribution.
 - b) Show that if sampling from normal population with variance σ^2 , the variate ns^2/σ^2 has χ^2 distribution with (n-1) d.f. provided \bar{x} and s^2 are independent, where \bar{x} and s^2 are the sample mean and variance respectively. (5+5)

Answer any TWO of the following:

10x2=20

- a) Show that when sampling from normal distribution sample variance is a biased estimator of population variance but asymptotically unbiased.
 - b) Let x_1 , x_2 be independent random sample from $P(\lambda)$. Show that $x_1 + x_2$ is sufficient for λ (5+5)
- 9. a) Find the m.l.e. of θ in the beta distribution of the first kind with parameters θ and 1.
 - b) $x_1 x_2 ... x_n$ are i.i.d. B(n, p) where both n and p and unknown. Find the moment estimators of n and p. (5+5)
- Derive the $100(1 \alpha)$ % central confidence interval for the ratio of variances of two independent normal population with known means.
 - b) Derive the $100(1 \alpha)$ % central confidence interval for the difference in proportions of two independent populations based on two samples of large sizes. (6+4)

STA	301	1
17 I A	JUL	- 1

Reg. No.

CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2013

STATISTICS

DISTRIBUTIONS AND ESTIMATION THEORY

Time: 3 Hrs

Max. Marks: 80

PART - A

Answer any TEN of the following:

2X10=20

- 1. a) If 'X' has uniform distribution over the range (0, 1), find the mean and variance.
 - b) If X is a continuous random variable with c.d.f. (F(x)), then show that $Y = log_e F(x)$ is an exponential random variable.
 - c) Obtain the mean of X with p.d.f. $f(x) = \frac{1}{\theta} e^{-x/\theta}$ x > 0 $\theta > 0$
 - d) Write down the p.d.f. of Beta variate of the first kind.
 - e) If X is a Normal variate with mean μ and S.D. σ , then write down the p.d.f. of $\left(\frac{x-\mu}{\sigma}\right)^2$
 - f) Find the distribution function of first order statistics.
 - g) Show that for normal distribution all odd moments about mean vanish.
 - h) Write down the p.d.f. of students 't' variate with 'n' degrees of freedom.
 - i) If t is unbiased for θ , show that \sqrt{t} is biased for $\sqrt{\theta}$.
 - Distinguish between an estimator and an estimate.
 - k) Explain the concept of relative efficiency.
 - What is meant by interval estimation?

PART - B

Answer any TWO of the following:

10x2=20

- 2. a) Obtain moment generating function and cumulant generating function of the distribution with p.d.f. f(x): $\theta e^{-x\theta}$ $0 < x < \infty$, $\theta > 0$ and hence obtain β_1 and β_2 .
 - b) Derive the MGF of Gamma distribution with parameters α and n.

(5+5)

- 3. a) Find the MGF and Cumulant generating function of Normal distribution. Find β_1 and β_2 using Cumulant generating function.
 - b) State and prove additive property of Normal variates.

(5+5)

- 4. a) Define Beta distribution of the second kind. Find its mean and variances.
 - b) Find median of Cauchy distribution with parameters λ and θ . (5+5)

10x2=20

- 5. a) If X_1 and X_2 are two independent gamma variates with parameters λ_1 and λ_2 respectively. Find the distribution of X_1/X_2 Identify the distribution.
 - b) If X_1 and X_2 are two independent standard normal variates find the distribution of $\left(\frac{x_2-x_1}{2}\right)^2$ (5+5)
- 6. a) Derive the p.d.f. of Chi-square variates with 'n' degrees of freedom.
 - b) Derive the even order central moments of 't' distribution with 'n' degrees of freedom. (5+5)
- 7. a) Derive the mode of F distribution.
 - b) If F is Snedecor's F-variate with (n₁, n₂) degrees of freedom obtain the distribution of 1/F. (5+5)

Answer any TWO of the following:

10x2=20

- 8. a) If $x_1 x_2 ... x_n$ is a random sample from $U(-\theta, \theta)$ distribution show that $T_n = \max(x_1, x_2 ... x_n)$ is biased for θ . Is Tn asymptotically unbiased?
 - b) If $x_1 x_2 ... x_n$ is a random sample from $U(-\theta, \theta)$ distribution show that $T_n = \sum x_i$ is sufficient statistic for θ . (5+5)
- 9. a) If $x_1 x_2 ... x_n$ is a random sample from the exponential distribution with density $f(x) = \frac{1}{\theta} e^{-x/\theta} \quad x > 0 \quad \theta > 0$, find the m.l.e. of θ
 - b) If $x_1 x_2 ... x_n$ are i.i.d. B(n, θ) where both n and p and unknown. Find the moment estimators of n and p. (5+5)
- 10. a) Derive the $100(1 \alpha)$ % central confidence interval for difference in means of two independent normal populations with unknown but common variance.
 - b) Obtain the confidence interval for the population proportion based on the large sample.

 (6+4)

COTT		20	1	1
ST	А	-31	и	

Reg. No.

CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2014 STATISTICS

DISTRIBUTIONS AND ESTIMATION THEORY

Time: 3 Hrs

PART - A

Max. Marks: 80

Answer any TEN of the following:

2x10=20

- 1. a) Obtain the distribution function of a rectangular distribution over the range (a, b).
 - b) Give two real life situations wherein the exponential distribution is appropriate.
 - c) If x_1, x_2, \dots, x_n is a random sample from normal with mean μ and variance σ^2 . What is the probability distribution of \bar{x} ?
 - d) State the relation between Normal, Chi square, t and F distribution.
 - e) Distinguish between parameter and statistic.
 - f) Show that $2\overline{x}$ is an unbiased estimate of θ for $f(x,\theta) = \frac{1}{\theta}$. $0 \le x \le \theta$.
 - g) Give an example of an estimator which is consistent but biased.
 - h) Mention any four properties of MLE.
 - i) Explain the concept of efficiency.
 - j) What is meant by interval estimation?
 - k) When Beta distribution of first kind is symmetric?
 - 1) Find the distribution of first order statistic.

PART - B

Answer any TWO of the following:

10x2=20

- 2. a) If X follows $U\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ find the distribution of Y = tan X and identify the distribution.
 - b) If X follows exponential distribution with density function, $f(x) = \frac{1}{\beta} e^{\frac{-(x-\alpha)}{\beta}} x \ge \alpha \text{ .Find the variance.}$ (5+5)
- 3. a) State and prove memory less property of exponential distribution.
 - b) For a normal distribution with parameters μ and σ^2 , find mean deviation from mean. (5+5)

4. a) Find the median of Cauchy distribution with parameter λ and θ ,

b) If
$$x \sim \beta_1(m, n)$$
, derive the distribution of $Y = \frac{x}{1-x}$. (4+4)

Answer any TWO of the following:

10x2=20

- 5. a) If x follows $N(\mu, \sigma^2)$, find the distribution of $\frac{1}{2} \left(\frac{x \mu}{\sigma} \right)^2$.
 - b) If $x \sim \beta_1(m,n)$, $y \sim \gamma(\alpha,m+n)$. Find the distribution of z = xy and identify the distribution. (5+5)
- 6. a) Derive the p.d.f. of Chi square variate with n degrees of freedom.
 - b) Obtain variance of t variate. (5+5)
- 7. a) Derive the mean of F distribution.
 - b) Show that sampling form Normal population with variance σ^2 , the variate ns^2/σ^2 has Chi square distribution with (n-1) degrees of freedom provided \overline{x} and s^2 are independent where \overline{x} and s^2 are the sample mean and variance respectively. (5+5)

Answer any TWO of the following:

10x2=20

- 8. a) Show that when sampling from Normal distribution, sample variance is a biased estimator of population variance but asymptocally unbiased.
 - b) Let X_1, X_2 be iid $P(\theta)$ random variables, show that $X_1 + 2X_2$ is not sufficient estimate of θ (5+5)
- 9. a) Find the MLE of θ in Bernoulli distribution based on a random sample of size n.
 - b) Describe moment method of estimation. (5+5)
- 10. a) Obtain the large sample confidence interval for the difference between the proportions of two populations.
 - b) Derive $100(1-\alpha)\%$ central confidence internal for the difference in means of two independent normal population with common unknown variance. (5+5)

STA 301.1

Reg. No.

CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2015 **STATISTICS**

DISTRIBUTIONS AND ESTIMATION THEORY

Time: 3 Hrs

(

Max. Marks: 80

PART - A

Answer any TEN of the following:

2x10=20

- 1. a) Find mean and variance of uniform distribution over the vary $(-\theta, \theta)$
 - b) If X has th p.d.f. $f(x) = \frac{1}{\theta} e^{-x/\theta}$ $x \ge 0$ $\theta > 0$. Find its distribution function.
 - c) Show that uniform distribution is the particular case of the beta distribution of first kind.
 - d) State the relation between normal, Chi square, t and F distribution.
 - e) Write down the p.d.f. of beta distribution of first kind.
 - f) If $x_i \sim N(G_1, G_i^2, i = 1...n)$ independent what is the mean of $\sum \left(\frac{x_i G_i}{\sigma_i}\right)$?
 - g) If $X \sim t_{(1)}$ then what is the p.d.f. of X?
 - h) The mode of x^2 distribution is 6. What are its mean and variance?
 - i) If T is unbiased for θ . Show that T^2 is biased for θ^2 .
 - j) Define sufficiency of an estimation.
 - k) Define relative efficiency of an estimator.
 - I) What is meant by interval estimation?

PART - B

Answer any TWO of the following:

10x2=20

- 2. a) Find the median of Cauchy distribution with parameter λ and θ .
 - b) Derive mean and variance of gamma distribution with parameters d, n.

(5+5)

- 3. a) Find the mode of normal distribution.
 - b) Derive the expression of even order central moments of normal distribution. (5+5)
- 4. a) Find mean and variance of beta distribution of second Kxd.
 - b) If $f(x) = \theta e^{-\theta x}$ $x \ge 0$ $\theta > 0$ then show that for every $a \ge 0$ $P[y \le x / x \ge a] = p(x \le x)$.

(4+4)

- 5. a) If X and Y are independent exponential variates with respective parameter θ , find the distribution of X + Y.
 - b) If X and Y are independent gamma variates with respective parameters m and n, find the distribution of $x \mid x + y$. (5+5)
- 6. a) Find mode of X^2 variate with 'n' d.f..
 - b) Derive the density function of 't' variate with 'n' d.f. (5+5)
- 7. a) Derive variance of 'F' distribution assuming mean,
 - b) Find mean and variance of t distribute with n d.f. (5+5)

10x2=20

- **8.** a) Prove that sample mean \overline{x} is consistent for θ in $N(\theta, \sigma^3)$.
 - b) If $x_1, x_2, ..., x_n$ in a random sample from Bernoulli $B(\theta)$ distribution. Show that $T_n = \sum x_i$ in a sufficient statistic force. (5+5)
- 9. a) If $x_1, x_2, ..., x_n$ be i.j.d. r.o.s. with common p.d.f.'s $f(x, 0) = \frac{\theta^2}{|\alpha|^2} e^{-\theta x} x^{2-1} x > 0$ and α is known. Find the m.l.e. of θ .
 - b) Find the moment estimators of the parameters of the uniform distribution over the interval $((\theta_1, \theta_2))$ (5+5)
- 10. a) Derive the $100(1-\alpha)$ % central confidence internal for the difference in means of two independent normal population with common unknown variance.
 - b) Obtain the confidence interval for the population proportions based on a large sample.
 (5+5)

CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2016 **STATISTICS**

DISTRIBUTIONS AND ESTIMATION THEORY

Time: 3 Hrs

Max. Marks: 80

PART - A

Answer any TEN of the following:

2x10=20

- 1. a) A random variable x is distributed uniformly over the interval (a, b) State its mean and variance.
 - b) Define Cauchy distribution with two parameters.
 - c) State its relation of Beta variate with Gamma variate.
 - d) If x has p.d.f. $f(x) = e^{-x}$, $x \ge 0$ Find its mean.
 - e) Write down any two important characteristics of Normal distribution.
 - f) Find the distribution function of nth order statistic.
 - g) If X and Y are independent normal variates, what is the distribution of X+ Y?
 - h) Write down the p.d.f. of Snedecor's F distribution with (m, n) degrees of freedom.
 - i) Define unbiasedness and asymptotic unbiasedness of an estimator.
 - j) Mention any two properties of maximum likelyhood estimators.
 - k) Find the moment estimator of the parameter θ of the uniform distributor over the interval $(-\theta, \theta)$.
 - 1) What are Confidence intervals?

PART – B

Answer any TWO of the following:

10x2=20

(5+5)

2. a) Obtain mean and variance of an exponential distribution whose p.d.f. is

$$f(x, \theta, \alpha) = \frac{1}{\theta} e^{-(x-\alpha)/\theta} \quad x \ge \alpha \quad \theta > 0$$

b) Find the median of Cauchy distribution with parameters λ and θ .

- 3. a) Derive the expression for even order central moments of a Normal distribution.
 - b) Find the median of Normal distribution. (6+4)
- 4. a) Define Beta distribution of first kind, find its mean and variance.
 - b) Find the MGF of Gamma variate with parameter 'n'. (5+5)

- 5. a) If X and Y are two independent gamma variates with parameters m and n respectively find the distribution of X/(X+Y) identify the distribution.
 - b) If X_1, X_2 are random observations from an exponential distribution with p.d.f. $f(x, \theta) = \theta e^{-x\theta} \quad x > 0 \quad \theta > 0$. Find the distribution of $X_1 + X_2$. (6+4)
- 6. a) Derive students 't' distribution with 'n' degrees of freedom.
 - b) Obtain mean and variance of Chi-square distribution with n degrees of freedom. (6+4)
- 7. a) Derive the expression for even order central moments of 't' distribution.
 - b) Deduce the mean of F distribution. (6+4)

10x2=20

- 8. a) Show that when sampling from normal population sample standard deviation is asymptotically unbiased and consistent for population standard deviation.
 - b) Show that the sum of items of a random sample of size n from an exponential distribution with p.d.f. $f(x, \theta) = \frac{1}{\theta} e^{-x/\theta}$ x > 0 is sufficient for θ . (6+4)
- 9. a) Determine the m.l.e. of the parameter of Poisson distribution based on a sample of size n.
 - b) x_1, x_2,x_n is a random sample from $N(0, \theta)$. Find the moment estimator of θ . Is it uniquely determined? (5+5)
- 10. a) Obtain $100(1-\alpha)$ % central confidence interval for the ratio of variance of two independent normal populations with known means.
 - b) Derive the $100 (1-\alpha)$ % central confidence interval for difference in proportions of two independent populations based on 2 samples and large sizes.

(6+4)
