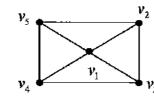
UNIT-IV

- Prove that every tree with two or more vertices is 2 chromatic.
 - (6)
 - Prove that a graph with n vertices is a tree if and only if its chromatic polynomial is $P_n(\lambda) = \lambda(\lambda - 1)^{n-1}.$ (6)
 - Write the chromatic polynomial of the following graph. (6)

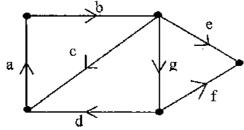


- Prove that a graph on n vertices is a complete graph if and only if its chromatic polynomial is $P_n(\lambda) = \lambda(\lambda - 1)(\lambda - 2) \cdots (\lambda - n + 1)$.
 - Prove that a graph with at least one edge is two chromatic if and only if it has no circuit of odd length.
 - Let a and b be two non adjacent vertices in a graph G. Let G' be a graph obtained by adding an edge between a and b. Let G'' be the simple graph obtained from G by fusing the vertices a and b together and replacing sets of parallel edges with a single edge. Prove that $P_n(\lambda)$ of $G = P_n(\lambda)$ of $G' + P_{n-1}(\lambda)$ of G''.

UNIT-V

- Prove that a digraph G is an Euler digraph if and only if it is connected and balanced. (6)
 - Let A_{ℓ} be the reduced incidence matrix of a connected digraph G. Then prove that the number of spanning trees in the graph equals the value of determinant $(A_t \cdot A_t^T)$.
 - Define incidence matrix for digraphs. Draw the digraph for the given incidence matrix. (6)

- Prove that arborescence is a tree in which every vertex other than the root has an in-degree of exactly one.
 - Write a circuit matrix of the digraph (6)



Show that determinant of every square submatrix of the incidence matrix of a digraph is 1, -1, or 0.

MAT 602.3

Reg. No.	***************************************
*********	***************************************

CREDIT BASED SIXTH SEMESTER B.Sc. DEGREE EXAMINATION APRIL 2016 **MATHEMATICS**

PAPER VIII: GRAPH THEORY

Duration: 3 hours

Max Marks: 120

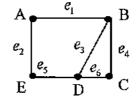
Note: 1. Answer any TEN questions in Part A. Each question carries 3 marks.

2. Answer FIVE full questions from Part B choosing ONE full question from each unit.

PART A

3x10=30

- Prove that the maximum number of edges in a simple graph is $\frac{n(n-1)}{2}$
 - In a binary tree of n vertices prove that the number of pendent vertices is $p = \frac{n+1}{2}$
 - List any 3 paths from a vertex 'A' to vertex 'C' in the following graph



- Prove that edge connectivity of a graph G cannot exceed the degree of the vertex with the smallest degree in G.
- Define the terms

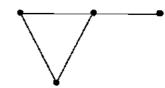
(6)

(6)

- Fundamental cutset
- Planar graph
- If G is a simple connected planar graph, with n vertices, e edges and f regions, then prove that $e \ge \frac{3}{2}f$
- Draw the graph whose adjacency matrix is

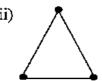
$$\begin{array}{c} v_1 & v_2 & v_3 & v_4 \\ v_1 & \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ v_3 & 0 & 1 & 0 & 0 \\ v_4 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Draw the dual of the graph

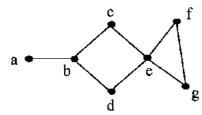


Define path matrix for the vertex pair (x, y) of a graph G.

- j) State how to identify degree of a vertex and isolated vertex in an incidence matrix of a graph?
- k) Find the chromatic number of the following graphs.



1) List any 3 maximal independent sets in the following graph G.



- m) Define arborescence.
- n) Write the adjacency matrix of

o) Draw an example for an Euler digraph

PART - B

UNIT-I

- 2. a) Prove that a connected graph G is an Euler graph if and only if all vertices of G are of even degree. (6
 - b) Prove that a tree with n vertices has n-1 edges.
 - c) If a graph has exactly 2 vertices of odd degree then prove that there exists a path joining these two vertices. (6)
- 3. a) Prove that a simple graph with n vertices and k components have at most

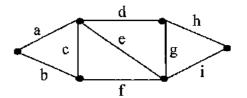
$$\frac{(n-k)(n-k+1)}{2} \text{ edges.}$$
 (6)

- b) Prove that every tree has at least two pendent vertices. (6)
- c) Show that the graph is a tree if and only if it is minimally connected. (6)

UNIT-II

- 4. a) Prove that Kuratowski's first graph K_5 is nonplanar. (6)
 - b) Prove that in a connected planar graph with n vertices and e edges, there are e n + 2 regions.

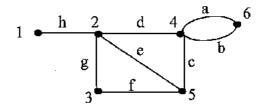
- e) Prove that in a connected graph G, any minimal set of edges containing at least one branch of every spanning tree of G is a cutset. (6)
- 5. a) Define fundamental cutset in a connected graph and list all fundamental cutsets for the following graph with respect to the spanning tree $T = \{a, c, f, g, h\}$ (6)



- b) Prove that graph K_{33} has no dual.
- Prove that a graph can be embedded in the surface of a sphere if and only if it can be embedded in a plane. (6)

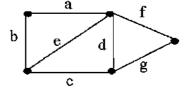
UNIT-III

- 6. a) Prove that ring sum of two circuits in a graph G is either a circuit or an edge disjoint union of circuits. (6)
 - b) Write the path matrix P(1,4) of the following graph (6)



c) If A(G) is the incident matrix of a connected graph G with n vertices, show that rank of A(G) = n-1 (6)

- Show that in a vector space of a graph the circuit subspace W_r and the cutset subspace W_s are orthogonal to each other. (6)
 - b) Write the cutset matrix for the following graph. (6)



(6)

(6)

c) Let A and B respectively, be the incidence and the circuit matrix of a self loop free graph whose columns are arranged using the same order of edges. Prove that A · B^T = B · A^T = 0 (mod 2).