CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2012 MATHEMATICS PAPER III: NUMBER THEORY AND DIFFERENTIAL EQUATIONS
 Duration: $\mathbf{3}$ hours

Note: 1. Answer any TEN questions in Part A. Each question carries 3 marks.
2. Answer FIVE full questions from Part B choosing ONE full question from each unit.

PART A
$3 \times 10=30$

1. a) If p is a prime and $p \mid a b$ then prove that $p \mid a$ or $p \mid b$.
b) Find the remainder obtained upon dividing the sum

$$
1!+2!+3!+4!+------+99!+100!\text { By } 12
$$

c) If a is a solution of $\mathrm{p}(x) \equiv 0(\bmod n)$ and $a \equiv b(\bmod n)$ then show that b is also a solution.
d) Find $\phi(26,000)$.
e) For $\mathrm{n}>2$, prove that $\phi(n)$ is an even integer.
f) If g.c.d. $(\mathrm{a}, \mathrm{bc})=1$, prove that g.c.d. $(\mathrm{a}, \mathrm{b})=1$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are integers.
g) If x, y, z is a primitive Pathagorean triple, prove that one of integers x and y is even, while the other is odd.
h) For the Bibonacci sequence $\left\{\mho_{n}\right\}$, show that $\operatorname{gcd}\left(\mho_{n}, \mho_{n+1}\right)=1$ for every $n \geq 1$.
i) Define $4^{\text {th }}$ convergent of a continued fraction and find c_{2} of $[0 ; 2,1,2,6]$
j) Find the orthogonal trajectories of the family of straight lines with slope and yinterrupt equal.
k) Determine whether the function $f(x, y)=n \operatorname{Sin} \frac{y}{x}-y \operatorname{Sin} \frac{x}{y}$ is homogenous or not. If it is homogenous then find its degree.

1) Test the exactness of $(\cos x \cos y-\cot x) d x-\sin x \sin y d y=0$
m) Find the p -discriminant equation of $x p^{2}-2 y p+4 x=0$
n) Solve : $y=p x+p^{3}$
o) Solve : $y^{11}=x\left(y^{1}\right)^{3}$

PART - B

UNIT-I

2. a) For arbitrary integers a and b, prove that $a \equiv b(\bmod n)$ if an only if a and b leave the same non-negative remainder when divided by n.
b) State and prove fundamental theorem of arithmetic.
c) Let $N=a_{m} 10^{m}+1_{m-1} 10^{m-1}+\cdots+a, 10+a_{0}$ be the decimal representation of the positive integer $\mathrm{N}, 0 \leq a_{k}<10$ and let $\mathrm{s}=a_{0}+a_{1}+\cdots+a_{m}$. Prove that $9 / \mathrm{N}$ if and only if 9/S.
3. a) Solve the linear congruence: $6 \equiv 15(\bmod 21)$
b) If $c a \equiv c b(\bmod n)$ then prove that $a \equiv b(\bmod n / d)$ where $\mathrm{d}=$ g.c.d. (c, n)
c) Let $p(x)=\sum_{k=0}^{m} C_{k} x^{k} \quad$ be a polynomial function x with integral coefficients C_{K}. If $a \equiv b(\bmod n)$ then prove that $p(a) \equiv p(b)(\bmod n)$.

UNIT-II

4. a) If n is a positive integer and g.c.d. $(\mathrm{a}, \mathrm{n})=1$ then prove that $a^{\phi(n)} \equiv 1(\bmod n)$
b) If p is a prime and $\mathrm{p}+\mathrm{a}$ then prove that $a^{p-1} \equiv 1(\bmod \mathrm{~b})$
c) If p and q are distinct primes such that $a^{p} \equiv a(\bmod q)$ and $a^{q} \equiv a(\bmod p)$ then prove that $a^{p q} \equiv a(\bmod p q)$.
5. a) For $n>1$, show that the sum of the positive integer less than n and relatively prime to n is $\frac{1}{2} n \phi(n)$.
b) Show that the quadratic congruence $x^{2}+1 \equiv 0(\bmod p)$ where p is an odd prime, has a solution if and only if $p \equiv 1(\bmod 4)$.
c) If the integer $\mathrm{n}>1$ has the prime factorization $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{n}^{k_{n}}$ then prove that $(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{n}}\right)$.

UNIT-III

6. a) If $a b=c_{n}$ where g.c.d. $(a, b)=1$, then prove that there exist positive integers a_{1}, b_{l} such that $a=a_{1}^{n}, b=b_{1}^{n}$
b) Prove that the g.c.d. of two Fibonacci numbers is again a Fibonacci number.
c) Express $\frac{187}{57}$ as finite simple continued fraction.
7. a) Prove that the radius of the inscribed circle of a pythagorean triangle is always an integer.
b) If $C_{k}=\frac{p_{k}}{q_{k}}$ is the $k^{\text {th }}$ convergent of the simple continued fraction $\left[a_{0}, a_{1}, a_{2}, \ldots a_{n}\right]$ then prove that $p_{k} q_{k-1}-q_{k} p_{k-1=(-1)^{k-1}, 1 \leq k \leq n \text {. }}^{\text {. }}$
d) Prove that any rational number can be written as a finite simple continued fraction.

UNIT-IV

8. a) Solve : $\left(x^{2}+2 x y=4 y^{2} d x-\left(x^{2}-8 x y-4 y^{2}\right) d y=0\right.$
b) Solve : $y d x+(3 x-x y+2) d y=0$
c) Solve : $(2 x+3 y-5) d x+(3 x-y-2) d y=0$
9. a) Solve $6 y^{2} d x-x\left(2 x^{3}+y\right) d y=0$
b) Solve : $3 x^{2} y d x+\left(y^{4}-x^{3}\right) d y=0$
c) Find the orthogonal trajectories of $r=a(1+\cos \theta)$

UNIT-V

10. a) Solve : $p^{2}-\left(x^{2} y-3\right) p+3 x^{2} y=0$
b) Solve : $\left(x^{2}-1\right) p^{2}-2 x y p+y^{2}-1=0$
c) Solve : $x y^{11}-\left(y^{1}\right)^{3}-y^{1}=0$
11. a) Solve : $x y p^{2}+(x+y) p+1=0$
b) Solve : $x p^{2}-3 y p+9 x^{2}=0$, for $x>0$
c) Solve : $y y^{11}-\left(y^{1}\right)^{2}+1=0$

CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2013 MATHEMATICS
 PAPER III: NUMBER THEORY AND DIFFERENTIAL EQUATIONS
 Duration: 3 hours
 Max Marks: 120

Note: 1. Answer any TEN questions in Part A. Each question carries 3 marks.
2. Answer FIVE full questions from Part B choosing ONE full question from each unit.

1. a) Prove that 41 divides $2^{20}-1$
b) If p is a prime and $p \mid$ ab then prove that $p \mid \mathrm{a}$ or $p \mid \mathrm{b}$.
p) Solve the linear congruence $6 x \equiv 15 \bmod 21$
q) If p is a prime, prove that $a^{p} \equiv a \bmod p$ for any integer a.
r) Find the sum of all positive integers which are less than 30 and relatively prime to 30 .
s) Find ϕ (1001).
t) If u_{n} is a Fibonacci sequence find the g.c.d. $\left(u_{16}, u_{12}\right)$.
u) Find the convergent C_{2} for the simple continued fraction $[0 ; 2,1,2,5,1]$.
v) Prove that g.c.d. $\left(u_{n}, u_{n+1}\right)=1$ for every $n \geq 1$. where u_{n} is the $\mathrm{n}^{\text {th }}$ Fibonacci number.
w) Solve $x \operatorname{Sin} y d x+x^{2} \tan y d y=0$
x) Find whether the function $f(x, y)=x \log x-x \log y$ is homogeneous.
y) Find the integrating factor of the differential equation
$\left(4 x y+3 y^{2}-x\right) d x+x(x+2 y) d y=0$.
z) Solve the equation $p^{2}-x p+y=0$
aa) Solve $(y+1) y^{/ /}=\left(y^{\prime}\right)^{2}$
bb) Find the orthogonal trajectories of the family $y^{2}=4 a x$

PART - B

UNIT-I

2. a) State and prove fundamental theorem of Arithmetic.
b) If $\quad P(x)=\sum_{k=0}^{m} c_{k} x^{k} \quad$ is a polynomial with integral coefficients c_{k} and
$a \equiv b \bmod n$, then prove that $P(a) \equiv P(b) \bmod n$.
c) If $\quad N=\sum_{k=0}^{m} a_{k} 10^{k} \quad$ is the decimal representation of a positive integer $\mathrm{N}, 0 \leq a_{k}<10$ and $\mathrm{T}=a_{0}-a_{1}+a_{2}-a_{3}+\cdots+(-1)^{m} a_{m}$, then prove that $11 / \mathrm{N}$ if and only if $11 / \mathrm{T}$.
3. a) Show that the linear congruence $a x \equiv b \bmod n$ has a solution iff $\mathrm{d} \mid \mathrm{b}$ where $\mathrm{d}=$ g.c.d. (a, n). Also prove that if $\mathrm{d} \mid \mathrm{b}$ then it has ' d ' mutually incongruent solutions modulo n .
b) Solve the linear congruence $17 x \equiv 9 \bmod 276$.

UNIT-II

4. a) If p is a prime prove that $(p-1)!\equiv-1 \bmod p$
b) If n is a positive integer and g.c.d. $(\mathrm{a}, \mathrm{n})=1$ then prove that $a^{\phi(n)} \equiv 1(\bmod n)$
5. a) If $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ then prove that

$$
\begin{equation*}
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{r}}\right) \text { where } n>1 . \tag{6}
\end{equation*}
$$

e) For $n>2$, prove that $\phi(n)$ is an even integer.
f) For $n>1$ prove that the sum of positive integers less than n and relatively prime to n is $\frac{1}{2} n \phi(n)$.

UNIT-III

6. a) Prove that radius of the inscribed circle of a Pythagorean triangle is always an integer.
b) Prove that any rational number can be written as a finite simple continued fraction.
d) Prove that for Fibonacci numbers, g.c.d. $\left(u_{m}, u_{n}\right)=u_{d}$ where $\mathrm{d}=$ g.c.d.(m, n)
7. a) Prove that area of a Pythagorean triangle can never be equal to a perfect square. (6)
b) Prove that the kth convergent of a simple continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots a_{n}\right]$ has the value $C_{k}=\frac{p_{k}}{q_{k}} \quad 0 \leq k \leq n$, where $k \geq 2 \& p_{k}=a_{k} p_{k-1}+p_{k-2}$, $q_{k}=a_{k} q_{k-1}+q_{k-2}$
c) Express $\frac{187}{57}$ as a simple continued fraction.

UNIT-IV

8. a) Solve $x y d x-\left(x^{2}+3 y^{2}\right) d y=0$
b) Solve $\left(2 x^{3}-x y^{2}-2 y+3\right) d x-\left(x^{2} y+2 x\right) d y=0$
c) Find the orthogonal trajectories of the family of curves $r=a(1+\cos \theta)$
9. a) Solve $y\left(6 y^{2}-x-1\right) d x+2 x d y=0$
b) Solve $y d x+(3 x-x y+2) d y=0$
c) A substance is being converted into another substance. At the end of half a minute, two thirds of the original amount has been already converted. Find how much unconverted substance remains at $t=60$ seconds.

UNIT-V

10. a) Solve $x y p^{2}+(x+y) p+1=0$
b) Find the general solution and also the singular solution of the equation $x p^{2}-2 y p+4 x=0$
c) Solve : $2 y y^{/ /}+\left(y^{\prime}\right)^{3}=0$
11. a) Find the general and singular solution of $p^{2}+x^{3} p-2 x^{2} y=0$
b) Solve $y^{\prime /}=x\left(y^{\prime}\right)^{3}$
c) Solve $p^{2}-\left(x^{2} y+3\right) p+3 x^{2} y=0$

Note: 1. Answer any TEN questions in Part A. Each question carries 3 marks.

2. Answer FIVE full questions from Part B choosing ONE full question from

 each unit.
PART A

3x10=30

1. a) Find the remainder when the sum $1!+2$! $+3!+\ldots+99$! +100 ! is divided by 12 .
b) Using divisibility test, find whether the number 457182 is divisible by 11 or not.
cc) Solve the congruence $5 x \equiv 2(\bmod 26)$.
dd) If p is a prime, then prove that $a^{p} \equiv a(\bmod p)$, for any integer a.
ee) For $n>2$, prove that $\phi(n)$ is an even integer.
ff) Calculate $\phi(5040)$.
gg) If x, y, z is a primitive Pythagorean triple. Then prove that one of integers x and y is even while the other is odd.
hh) For the Fibonacci sequence, prove that g.c.d. $\left(u_{n}, u_{n+1}\right)=1$ for every $n \geq 1$.
ii) Express $[3,2,1,2,5,1]$ as a rational number.
ji) Determine whether the function $f(x, y)=x \sin y / x-y \sin y / x$
kk) Check the exactness of $y^{2}-2 x y+6 x d x-x^{2}-2 x y+2 d y=0$
11) Find the integrating factor of the differential equation

$$
y(x+y) d x+(x+y-1) d y=0
$$

mm) Find the orthogonal trajectories of $x-4 y=c$
nn) Solve $x^{2} p^{2}-y^{2}=0$
oo) Solve $y=p x+p^{3}$

PART - B

UNIT-I

2. a) Prove that every positive integer $n>1$ can be expressed as a product of primes, this representation is unique apart from the order in which factors occur.
b) If $N=\sum_{k=0}^{m} a_{n} 10^{k}$ is the decimal representation of a positive integer $N, 0 \leq a_{k}<10$ and $S=a_{0}+a_{1}+\ldots . .+a_{m}$, then show that $9 \mid N$ if and only if $9 \mid S$.
$a \equiv b \bmod n$, then prove that $P(a) \equiv P(b) \bmod n$.
c) Solve the following simultaneous congruences $x \equiv 1(\bmod 3), x \equiv 2(\bmod 5), x \equiv 3(\bmod 7)$
3. a) Show that the linear congruence $a x \equiv b \bmod n$ has a solution iff $\mathrm{d} \mid \mathrm{b}$ where $\mathrm{d}=$ g.c.d.(a, n$)$. Also prove that if $\mathrm{d} \mid \mathrm{b}$ then it has ' d ' mutually incongruent solutions modulo n.
b) If $P(x)=\sum_{k=0}^{n} C_{k} x^{k}$ is a polynomial with integral coefficients C_{k} and $a \equiv b(\bmod n)$ then prove that $P(a) \equiv P(b) \bmod n$.
c) If p is a prime and $p \mid a b$ then prove that $p \mid a$ or $p \mid b$.

UNIT-II

4. a) If n is a positive integer and g.c.d.(a, n$)=1$ then prove that $a^{\phi(n)} \equiv 1(\bmod n)$, where $\phi(n)$ is Euler's function ϕ.
b) Prove that the quadralic congruence $x^{2}+1 \equiv 0(\bmod p)$
5. a) If p is a prime and $p \chi a$ then prove that $a^{p-1} \equiv 1(\bmod p)$
g) Given integers a, b, c prove that g.c.d. $(a, b c)=1$ if and only if g.c.d. $(a, b)=1$ and g.c.d. $(a, c)=1$.
h) For each positive $n \geq 1$, show that $n=\sum_{d \| n} \phi(d)$, the sum being extended over all positive divisors of n.

UNIT-III

6. a) If $m=q n+r$ then prove that g.c.d $u_{m}, u_{n}=g . c . d u_{n}, u_{r}$
b) Prove that any rational number can be written as a finite simple continued fraction.
e) Express $\frac{187}{57}$ as a finite simple continued fraction.
7. a) Prove that radius of the inscribed circle of a Pythagorean triangle is always an integer.
b) For $m \geq 1, n \geq 1$, show that $U_{m n}$ is divisible by U_{m}
c) If $C_{k}=\frac{p_{k}}{q_{k}}$, is the $k^{t h}$ convergent of the simple continued fraction $\left[a_{0}, a_{1}, a_{2}, \ldots . a_{n}\right]$ then prove that $p_{k} q_{k-1}-q_{k} p_{k-1}=(-1)^{k-1}, 1 \leq k \leq c$

UNIT-IV

8. a) Solve $33 x^{2}+y^{2} d x-2 x y d y=0$
b) Solve $\frac{d y}{d x}=y-x y^{3} e^{-2 x}$
c) Find the orthogonal trajectories of the family of curves given by $r=a(1+\sin \theta)$
9. a) Solve $y^{1}=\operatorname{cosec} x+y \cot x$.
b) Solve $\left.y=6 y^{2}-x-1\right) d x+2 x d y=0$
c) A certain radio-active substances has a half-life of 38 hours. Find how long it takes for 90% of the radioactivity to be dissipated?

UNIT-V

10. a) Solve $x^{2} p^{2}-5 x y p+6 y^{2}=0$
b) Find the general and singular solution of $p^{2}+x^{3} p-2 x^{2} y=0$
c) Solve $x^{2}-1 p^{2}-2 x y p+y^{2}-1=0$
11. a) Solve $x p^{2}-(2 x-3 y) p+6 y=0$
b) Solve $x p^{2}-3 y p+9 x^{2}=0$
c) Solve $x y^{11}-\geq y^{13}-y^{1}=0$

CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2015 MATHEMATICS

PAPER III: FUNCTIONS OF SEVERAL VARIABLES,MULTIPLE INTEGRALS

 AND GROUP THEORY
Duration: $\mathbf{3}$ hours

Max Marks: 120

Note: 1. Answer any TEN questions in Part A. Each question carries 3 marks.

2. Answer FIVE full questions from Part B choosing ONE full question from each unit.

$$
\text { PART A } \quad 3 \times 10=30
$$

1. a) Find the domain of $z=\frac{1}{\sqrt{x^{2}+y^{2}-25}}$
b) Find the slope of the tangent line to the curve of intersection of the surface $z=\frac{1}{2} \sqrt{24-x^{2}-2 y^{2}}$ with the plane $\mathrm{y}=2$ at the point $2,2, \sqrt{3}$
pp) If $f(x, y)=e^{x} \sin y+\ln x y$, find $\frac{\partial^{3} f}{\partial x \partial y^{2}}$
qq) Find by double integration the area of the region in the xy plane bounded by the curves $y=x^{2}$ and $y=4 x-x^{2}$
rr) Evaluate $\iint_{R} e^{-\left(x^{2}+y^{2}\right)} d A$, where the region R is in the first quadrant and bounded by the circle $x^{2}+y^{2}=a^{2}$ and the coordinate axes.
ss) Find the area of the surface that is cut from the cylinder $x^{2}+z^{2}=16$ by the planes $x=0, x=2, y=0$ and $y=3$.
tt) Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{2 y}^{1+y^{2}} x d z d y d x$.
uu) Evaluate the line integral $\int_{C} 3 x d x+2 x y d y+z d z$
where $C: x=\cos t, y=\sin t, z=t, 0 \leq t \leq 2 \pi$
vv) Evaluate the iterated integral $\int_{0}^{\pi} \int_{2}^{4} \int_{0}^{1} r e^{z} d z d r d \theta$
ww) Show that every group of prime order is cyclic.
$\mathrm{xx})$ Compute $a^{-1} b a$ where $a=(135)(12)$ and $b=(1579)$
yy) Prove that the intersection of two subgroups of a group G is a subgroup of G.
zz) If N is a normal subgroup of G , then show that $g \mathrm{Ng}^{-1}=N$ for every $g \varepsilon G$
aaa) Let G be the group of integers under addition. Prove that $\phi: G \rightarrow G$ defined by $\phi(x)=2 x$ is a homomorphism and find its Kernel.
bbb) Define i) Centre of group ii) Automorphism

PART - B

UNIT-I

2. a) Prove that $\lim _{(x, y) \rightarrow(1,2)} 3 x^{2}+y=5$ by applying $\varepsilon-\delta$ definition.
b) If $u=x^{2}+x y, \quad x=r^{2}+s^{2}, \quad y=3 r-2 s$, find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial s}$ using chain rule.
c) Find the equation of the tangent plane and the equation of the normal line to the surface $x^{2}+y^{2}+z^{2}=17$ at the point $(2,-2,3)$
3. a) Let the function f be defined by

$$
f(x, y)=\left\{\begin{array}{cc}
x^{2}+y^{2}, & \text { if } x^{2}+y^{2} \leq 1 \tag{6}\\
0, & \text { if } x^{2}+y^{2}>1
\end{array}\right.
$$

Discuss the continuity of f. What is the region of continuity of f ?
b) If $f(x, y, z)=y^{2}+z^{2}-4 x z$, find the rate of change of $f(x, y, z)$ at $(-2,1,3)$ in the direction of the vector $\frac{2}{7} i-\frac{6}{7} j+\frac{3}{7} k$
c) If $f(x, y)=x^{3}+y^{2}-6 x^{2}+y-1$, then determine the relative extrema of f if there are any.

UNIT-II

4. a) Find an approximate value of the double integral $\iint_{R} x^{2}+y d A$, where R is the rectangular region having vertices $\mathrm{P}(0,0)$ and $\mathrm{Q}(4,2)$. Take the partition of R formed by the lines $x=1, x=2, x=3$ and $y=1$.
b) Using double integration find the area of the region inside the cardioid $r=2(1+\sin \theta)$.
c) Find the area of the top half of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ using double integration.
5. a) Evaluate $\iint_{R} x^{2} \sqrt{9-y^{2}} d A$ where R is the region bounded by the circle $x^{2}+y^{2}=9$
i) Find the volume of the solid in the first octant bounded by the cone $\mathrm{z}=\mathrm{r}$ and the cylinder $r=3 \sin \theta$
j) Find the area of the paraboloid $z=x^{2}+y^{2}$ below the plane $z=4$.
6. a) Find the volume of the solid above the elliptic paraboloid $3 x^{2}+y^{2}=z$ and below the cylinder $x^{2}+z=4$
b) Evaluate the line integral $\int_{C} \vec{F} \cdot \overrightarrow{d R}$ where

$$
\begin{equation*}
F(x, y)=2 x y \hat{i}+(x-2 y) \hat{j}, C: R(t)=\sin t \hat{i}-2 \cos t \hat{j}, 0 \leq t \leq \pi \tag{6}
\end{equation*}
$$

f) A homogeneous solid in the shape of a right circular cylinder has a radius of 2 m and an altitude of 4 m . Find the moment of intertia of the solid with respect to its axis.
7. a) Evaluate $\int_{0}^{\pi / 4} \int_{0}^{a} \int_{0}^{r \cos \theta} r \sec ^{3} \theta d z d r d \theta$
b) Find the volume of the solid enclosed by the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ by using spherical coordinates.
c) Evaluate the line integral $\int_{C} x^{2}+x y d x+y^{2}-x y d y$ C : the line $y=x$ from the origin to the point $(2,2)$.

UNIT-IV

8. a) If H is a nonempty finite subset of a group G and H is closed under multiplication, prove that H is a subgroup of G .
b) State and prove Lagrange's theorem.
c) If H and K are finite subgroups of G of orders $\mathrm{O}(\mathrm{H})$ and $\mathrm{O}(\mathrm{K})$ respectively, prove that $O(H K)=\frac{O(H) O(K)}{O(H \cap K)}$
9. a) Let G be a group and H be a subgroup of G . For all $a \varepsilon G$, prove that $H a=\{x \in G \mid a \equiv x(\bmod H)\}$
b) Show that every permutation is the product of its disjoint cycles.
c) If G is a group in which $(a \cdot b)^{i}=a^{i} \cdot b^{i}$ for three consecutive integers i for all $a, b \varepsilon G$, show that G is abelian

UNIT-V

10. a) Prove that a subgroup N of a group G is a normal subgroup of G if and only if the product of any two right cosets of N in G is again a right coset of N in G .
b) If G and \bar{G} are groups and $\phi: G \rightarrow \bar{G}$ is a homomorphism. Prove that
(i) $\phi(e)=\bar{e}$, where e and \bar{e} are identities in G and \bar{G} respectively.
(ii) $\phi\left(x^{-1}\right)=\phi(x)^{-1} \forall x \varepsilon G$
c) Prove that the set of all automorphisms of a group G is a group.
11. a) If G is a group and N is a normal subgroup of G , then prove that G / N is also a group.
b) Prove that a homomorphism of G onto \bar{G} with kernel K is an isomorphism of G onto \bar{G} if and only if $K=\{e\}$.
c) Prove that S_{n} has a normal subgroup of index 2 , the alternating group A_{n} consisting of all even permutations.
(6)
o) Let G be the group of all positive real numbers under multiplication and G^{\prime} be the group of all real numbers under addition. Define $\phi: G \rightarrow G^{\prime}$ by $\phi(x)=\log _{10} x$. Show that ϕ is a homomorphism.

PART - B

UNIT-I

2. a) By using $\varepsilon-\delta$ definition, prove that $\lim _{(x, y) \rightarrow(1,3)} 2 x+3 y=11$
b) The temperature at any point (x, y) of a rectangular plate lying in the xy plane is determined by $T(x, y)=x^{2}+y^{2}$.
(i) Find the rate of change of the temperature at the point $(3,4)$ in the direction making an angle of radian measure $\frac{1}{3} \pi$ with the positive x direction.
(ii) Find the direction for which the rate of change of the temperature at the point $(-3,1)$ is a maximum.
c) Find an equation of the tangent line to the curve of intersection of $x^{2}+y^{2}-z=8, \quad x-y^{2}+z^{2}=-2$ at the point $(2,-2,0)$.
3. a) Let f be a function defined by $f(x, y)=\left\{\begin{array}{cc}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x y) \neq(0,0) \\ 0 & \text { if }(x y)=(0,0)\end{array}\right.$
find $f_{12}(0,0)$
b) Given $u=x y+x z+y z, \quad x=r, \quad y=r \cos t, \quad z=r \sin t$, find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial t}$ using chain rule.
c) If $f(x, y)=2 x^{4}+y^{2}-x^{2}-2 y$ determine the relative extrema of f if there are any. (6)
(

UNIT-II

4. a) Find an approximate value of the double integral $\iint_{R}\left(2 x^{2}-3 y\right) d A$, where

R is the rectangular region having vertices $(-1,1)$ and $(2,3)$. Take a partition of R formed by the lines $x=0, x=1$ and $y=2$ and take $\left(\xi_{i} \gamma_{i}\right)$ at the center of the $\mathrm{i}^{\text {th }}$ sub region.
b) Find the volume of the solid in the first octant bounded by the two cylinders $x^{2}+y^{2}=4$ and $x^{2}+z^{2}=4$.
c) Find the area of the paraboloid $z=x^{2}+y^{2}$ below the plane $z=4$.
5. a) Find the volume of the solid bounded by the surface $f(x, y)=4-\frac{1}{9} x^{2}-\frac{1}{16} y^{2}$, the planes $x=3$ and $y=2$ and the coordinate planes.
b) Find by double integration the area of the region inside the cardioid $r=a(1+\cos \theta)$ and outside the circle $\gamma=a$
c) Find $\int_{1}^{4} \int_{y^{2}}^{y} \sqrt{\frac{y}{x}} d x d y$

UNIT-III

6. a) Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=25$, the plane $x+y+z=8$ and $x y$ plane, using triple integrals.
b) Suppose a particle moves along the parabola $y=x^{2}$ from the point ($-1,1$) to the point $(2,4)$. Find the total work done if the motion is caused by the force field
$F(x, y)=\left(x^{2}+y^{2}\right) \hat{i}+3 x^{2} y \hat{j}$. Assume that the arc is measured in meters and the force is measured in newtons.
c) A homogeneous solid is bounded above by the sphere $\rho=a$ and below by the cone, $\phi=\alpha, 0<\alpha<\frac{1}{2} \pi$. Find the moment of inertia of the solid about the z - axis.
7. a) A particle transverses the twisted cubic $\vec{R}(t)=t \hat{i}+t^{2} \hat{j}+t^{3} \hat{k}, 0 \leq t \leq 1$. Find the total work done if the motion is caused by the force field $\vec{F}(x, y, z)=e^{x} \hat{i}+x e^{z} \hat{j}+x \sin \pi y^{2} \hat{k}$. Assume that the arc is measured in meters and force is measured in newtons.
b) Evaluate $\int_{-1}^{0} \int_{e}^{2 e} \int_{0}^{\pi / 3} y \ln z \tan x d x d z d y$
d) Find the volume of the solid bounded by the paraboloid $x^{2}+y^{2}+z^{2}=12$ and the plane $\mathrm{z}=8$ using cylindrical coordinates.

UNIT-IV

8. a) If H is a non empty finite subset of G and H is closed under multiplication then prove that H is a subgroup of G .
b) If G is a finite group and H is a subgroup of G, then show that $O(H) \mid O(G)$.
c) If H and K are finite subgroups of G of orders $\mathrm{O}(\mathrm{H})$ and $\mathrm{O}(\mathrm{K})$ respectively, prove that $O(H K)=\frac{O(H) O(K)}{O(H \cap K)}$
9. a) In a group G , define normalizer $\mathrm{N}(a)$ of $a \varepsilon G$ and prove that it is a subgroup of G . (6)
b) If G is a group and H is a subgroup of G , then show that the relation $a \equiv b(\bmod H)$ is an equivalence relation.
c) Let H and K be two subgroups of a group G . Prove that HK is a subgroup of G if and only if $\mathrm{HK}=\mathrm{KH}$.

UNIT-V

10. a) Prove that N is a normal subgroup of G if and only if $g \mathrm{Ng}^{-1}=N$ for every $g \varepsilon G$
b) If ϕ is a homomorphism of a group G onto \bar{G} with Kernel K, then prove that $\frac{G}{K}$ is isomorphic to \bar{G}.
c) Prove that the kernel of a homomorphism is a normal subgroup of group G.
11. a) Define centre of a group. Prove that it is always a normal subgroup.
b) Let G be any group, define $\tau_{g}: G \rightarrow G$ by $\tau_{g}(x)=g^{-1} x g$. Prove that τ_{g} is an automorphism.
c) Prove that the subgroup N of G is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.
\qquad

CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2016

PAPER III: FUNCTIONS OF SEVERAL VARIABLES, MULTIPLE INTEGRALS AND GROUP THEORY

Duration: 3 hours

Note: 1. Answer any TEN questions in Part A. Each question carries 3 marks.
2. Answer FIVE full questions from Part B choosing ONE full question from each unit.

PART A

$3 \times 10=30$

1. a) Find the domain of $f(x, y)=\frac{\sqrt{25-x^{2}-y^{2}}}{x}$
b) If $f(r, \theta)=r \tan \theta-r^{2} \sin \theta$ find $f_{2}(3, \pi)$.
c) If $f(x, y)=x^{2}-4 y$, find $\nabla f(-2,2)$.
d) Evaluate $\int_{0}^{4} \int_{0}^{y} \sqrt{9+y^{2}} d x d y$
e) Find the volume of the solid in the first octant bounded by the cone $z=r$ and the cylinder $r=3 \sin \theta$
f) Find the area of the surface cut from the plane $2 x+y+z=4$ by the planes $\mathrm{x}=0, \mathrm{x}=1$, $\mathrm{y}=0$ and $\mathrm{y}=1$.
g) Evaluate $\iiint_{S} x y \sin y z d V$ if S is the rectangular parallelpiped bounded by the planes $x=\pi, y=\frac{1}{2} \pi, z=\frac{1}{3} \pi$ and the coordinate planes.
h) Evaluate the line integral $\int_{C}\left(x^{2}+x y\right) d x+\left(y^{2}-x y\right) d y, \mathrm{C}$: the line $\mathrm{y}=\mathrm{x}$ from the origin to
the point $(2,2)$
i) Evaluate the iterated integral $\int_{0}^{\pi / 4} \int_{0}^{2 a \cos \phi} \int_{0}^{2 \pi} \rho^{2} \sin \phi d \theta d \rho d \phi$.
j) If G is a finite group and $a \varepsilon G$, then prove that $a^{0(G)}=e$.
k) If H and K are subgroups of G and $O(H)>\sqrt{O(G)}$ and $O(K)>\sqrt{O(G)}$, then prove that $H \cap K \neq(e)$.
1) Find the order of the permutation $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8\end{array}\right)$
m) If G and G^{\prime} are groups and $\phi: G \rightarrow G^{\prime}$ is an isomorphism, then show that $\operatorname{ker} \phi=\{e\}$, where e is the identity in G .
n) Show that the intersection of two normal subgroups of G is a normal subgroup of G.
