MAT 301.1

Reg. No.

CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2012 MATHEMATICS

PAPER III: NUMBER THEORY AND DIFFERENTIAL EQUATIONS Duration: 3 hours Max Marks: 120

Note: 1. Answer any TEN questions in Part A. Each question carries 3 marks.

2. Answer FIVE full questions from Part B choosing ONE full question from each unit.

PART A 3x10=30

- 1. a) If b is a prime and b|ab then prove that b|a or b|b.
 - b) Find the remainder obtained upon dividing the sum $1! + 2! + 3! + 4! + \dots + 99! + 100!$ By 12.
 - c) If a is a solution of $p(x) \equiv 0 \pmod{n}$ and $a \equiv b \pmod{n}$ then show that b is also a solution.
 - d) Find ϕ (26,000).
 - e) For n>2, prove that $\phi(n)$ is an even integer.
 - f) If g.c.d. (a, bc) = 1, prove that g.c.d. (a, b) = 1 where a, b, c are integers.
 - g) If x, y, z is a primitive Pathagorean triple, prove that one of integers x and y is even, while the other is odd.
 - h) For the Bibonacci sequence $\{\mathcal{U}_n\}$, show that gcd $(\mathcal{U}_n, \mathcal{U}_{n+1}) = 1$ for every $n \ge 1$.
 - i) Define 4^{th} convergent of a continued fraction and find c_2 of [0; 2, 1, 2, 6]

- j) Find the orthogonal trajectories of the family of straight lines with slope and y interrupt equal.
- k) Determine whether the function $f(x, y) = n \sin \frac{y}{x} y \sin \frac{x}{y}$ is homogenous or not. If it is homogenous then find its degree.
- 1) Test the exactness of $(\cos x \cos y \cot x)dx \sin x \sin y dy = 0$
- m) Find the b -discriminant equation of $xp^2 2yp + 4x = 0$
- n) Solve : $y = px + p^3$
- o) Solve : $y^{11} = x(y^1)^3$

PART - B

UNIT-I

- 2. a) For arbitrary integers *a* and *b*, prove that $a \equiv b \pmod{n}$ if an only if *a* and *b* leave the same non-negative remainder when divided by *n*. (6)
 - b) State and prove fundamental theorem of arithmetic. (6)
 - c) Let $N = a_m 10^m + 1_{m-1} 10^{m-1} + \dots + a$, $10 + a_0$ be the decimal representation of the positive integer N, $0 \le a_k < 10$ and let $s = a_0 + a_1 + \dots + a_m$. Prove that 9/N if and only if 9/S. (6)

3. a) Solve the linear congruence:
$$6 \equiv 15 \pmod{21}$$
 (6)

- b) If $ca \equiv cb \pmod{n}$ then prove that $a \equiv b \pmod{n/d}$ where d = g.c.d. (c, n) (6)
- c) Let $p(x) = \sum_{k=0}^{m} C_k x^k$ be a polynomial function x with integral coefficients

 C_{K} . If $a \equiv b \pmod{n}$ then prove that $p(a) \equiv p(b) \pmod{n}$. (6)

UNIT-II

4. a) If n is a positive integer and g.c.d. (a, n) = 1 then prove that $a^{\phi(n)} \equiv 1 \pmod{n}$ (6)

- b) If b is a prime and b +a then prove that $a^{p-1} \equiv 1 \pmod{b}$ (6)
- c) If b and q are distinct primes such that $a^p \equiv a \pmod{q}$ and $a^q \equiv a \pmod{p}$ then prove that $a^{pq} \equiv a \pmod{pq}$. (6)
- 5. a) For n > 1, show that the sum of the positive integer less than n and relatively prime to n is $\frac{1}{2}n\phi(n)$. (6)

b) Show that the quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$ where p is an odd prime, has a solution if and only if $p \equiv 1 \pmod{4}$. (6)

c) If the integer n > 1 has the prime factorization
$$n = p_1^{k_1} p_2^{k_2} \dots p_n^{k_n}$$
 then prove
that $(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_n}\right)$. (6)

UNIT-III

6. a) If
$$ab = c_n$$
 where g.c.d. $(a, b) = 1$, then prove that there exist positive integers
 a_1, b_1 such that $a = a_1^n, b = b_1^n$ (6)

b) Prove that the g.c.d. of two Fibonacci numbers is again a Fibonacci number. (6)

c) Express
$$\frac{187}{57}$$
 as finite simple continued fraction. (6)

- 7. a) Prove that the radius of the inscribed circle of a pythagorean triangle is always an integer. (6)
 - b) If $C_k = \frac{p_k}{q_k}$ is the k^{th} convergent of the simple continued fraction $[a_0, a_1, a_2, ..., a_n]$ then prove that $p_k q_{k-1} - q_k p_{k-1=(-1)^{k-1}}, 1 \le k \le n.$ (6)
 - d) Prove that any rational number can be written as a finite simple continued fraction. (6)

UNIT-IV

8. a) Solve:
$$(x^2 + 2xy = 4y^2 dx - (x^2 - 8xy - 4y^2) dy = 0$$
 06

b) Solve : y dx + (3x - xy + 2)dy = 0

c) Solve:
$$(2x + 3y - 5)dx + (3x - y - 2)dy = 0$$
 (6)

(6)

9. a) Solve
$$6y^2 dx - x (2x^3 + y) dy = 0$$
 (6)
b) Solve $3x^2 y dx + (y^4 - x^3) dy = 0$ (6)

c) Find the orthogonal trajectories of $r = a(1 + \cos\theta)$ (6)

UNIT-V

10. a) Solve:
$$p^2 - (x^2y - 3)p + 3x^2y = 0$$

b) Solve:
$$(x^2 - 1)p^2 - 2xyp + y^2 - 1 = 0$$

c) Solve:
$$xy^{11} - (y^1)^3 - y^1 = 0$$

11. a) Solve:
$$xyp^2 + (x + y)p + 1 = 0$$

b) Solve:
$$xp^2 - 3yp + 9x^2 = 0$$
, for $x > 0$

c) Solve:
$$yy^{11} - (y^1)^2 + 1 = 0$$

MAT 301.1

Reg. No.

CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2013 MATHEMATICS

PAPER III: NUMBER THEORY AND DIFFERENTIAL EQUATIONS Duration: 3 hours Max Marks: 120

Note: 1. Answer any TEN questions in Part A. Each question carries 3 marks.

2. Answer FIVE full questions from Part B choosing ONE full question from each unit.

- 1. a) Prove that 41 divides $2^{20} 1$
 - b) If p is a prime and p ab then prove that $p \mid a \text{ or } p \mid b$.
 - p) Solve the linear congruence $6x \equiv 15 \mod 21$
 - q) If p is a prime, prove that $a^p \equiv a \mod p$ for any integer a.
 - r) Find the sum of all positive integers which are less than 30 and relatively prime to 30.
 - s) Find ϕ (1001).
 - t) If u_n is a Fibonacci sequence find the g.c.d. (u_{16}, u_{12}) .
 - u) Find the convergent C_2 for the simple continued fraction [0; 2, 1, 2, 5, 1].
 - v) Prove that g.c.d. $(u_n, u_{n+1}) = 1$ for every $n \ge 1$. where u_n is the nth Fibonacci number.
 - w) Solve $x \sin y \, dx + x^2 \tan y \, dy = 0$
 - x) Find whether the function $f(x, y) = x \log x x \log y$ is homogeneous.
 - y) Find the integrating factor of the differential equation $(4xy + 3y^2 x)dx + x(x + 2y)dy = 0.$
 - z) Solve the equation $p^2 xp + y = 0$
 - aa) Solve $(y + 1) y'' = (y')^2$
 - bb) Find the orthogonal trajectories of the family $y^2 = 4ax$

PART - B

UNIT-I

2. a) State and prove fundamental theorem of Arithmetic. (9) m

b) If
$$P(x) = \sum_{k=0}^{\infty} c_k x^k$$
 is a polynomial with integral coefficients c_k and $a \equiv b \mod n$, then prove that $P(a) \equiv P(b) \mod n$. (4)

c) If $N = \sum_{k=0}^{m} a_k \, 10^k$ is the decimal representation of a positive integer N, $0 \le a_k < 10$ and $T = a_0 - a_1 + a_2 - a_3 + \dots + (-1)^m a_m$, then prove that 11/N if and only if 11/T. (5)

- 3. a) Show that the linear congruence ax ≡ b mod n has a solution iff d | b where d = g.c.d.(a, n). Also prove that if d | b then it has 'd' mutually incongruent solutions modulo n. (9)
 - b) Solve the linear congruence $17x \equiv 9 \mod 276$. (9)

UNIT-II

4. a) If p is a prime prove that
$$(p-1)! \equiv -1 \mod p$$
 (9)

b) If n is a positive integer and g.c.d.(a, n) = 1 then prove that $a^{\phi(n)} \equiv 1 \pmod{n}$ (9)

- 5. a) If $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ then prove that $\phi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_r}\right)$ where n > 1. (6)
 - e) For n > 2, prove that $\phi(n)$ is an even integer. (6)
 - f) For n > 1 prove that the sum of positive integers less than *n* and relatively prime to *n* is $\frac{1}{2}n\phi(n)$. (6)

UNIT-III

- 6. a) Prove that radius of the inscribed circle of a Pythagorean triangle is always an integer. (6)
 - b) Prove that any rational number can be written as a finite simple continued fraction. (6)
 - d) Prove that for Fibonacci numbers, g.c.d. $(u_m, u_n) = u_d$ where d =g.c.d.(m, n) (6)
- 7. a) Prove that area of a Pythagorean triangle can never be equal to a perfect square. (6)
 - b) Prove that the kth convergent of a simple continued fraction $[a_0; a_1, a_2, ..., a_n]$ has the value $C_k = \frac{p_k}{q_k}$ $0 \le k \le n$, where $k \ge 2 \& p_k = a_k p_{k-1} + p_{k-2}$, $q_k = a_k q_{k-1} + q_{k-2}$ (6)
 - c) Express $\frac{187}{57}$ as a simple continued fraction. (6)

UNIT-IV

8. a) Solve
$$xy \, dx - (x^2 + 3y^2) \, dy = 0$$
 (6)

b) Solve
$$(2x^3 - xy^2 - 2y + 3) dx - (x^2y + 2x)dy = 0$$
 (6)

c) Find the orthogonal trajectories of the family of curves $r = a (1 + \cos \theta)$ (6)

9. a) Solve
$$y(6y^2 - x - 1)dx + 2x dy = 0$$
 (6)

b) Solve y dx + (3x - xy + 2)dy = 0 (6)

c) A substance is being converted into another substance. At the end of half a minute, two thirds of the original amount has been already converted. Find how much unconverted substance remains at t = 60 seconds. (6)

UNIT-V

10. a) Solve
$$xyp^2 + (x + y)p + 1 = 0$$
 (6)
b) Find the general solution and also the singular solution of the equation
 $xp^2 - 2yp + 4x = 0$ (6)

c) Solve:
$$2yy'' + (y')^3 = 0$$
 (6)

11. a) Find the general and singular solution of
$$p^2 + x^3p - 2x^2y = 0$$
 (6)

b) Solve
$$y'' = x(y')^3$$
 (6)

c) Solve
$$p^2 - (x^2y + 3)p + 3x^2y = 0$$
 (6)

MAT 301.1

Reg. No.

CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2014 MATHEMATICS

PAPER III: NUMBER THEORY AND DIFFERENTIAL EQUATIONS Duration: 3 hours Max Marks: 120

Note: 1. Answer any TEN questions in Part A. Each question carries 3 marks.

2. Answer FIVE full questions from Part B choosing ONE full question from each unit.

PART A 3x10=30

- 1. a) Find the remainder when the sum 1!+2!+3!+...+99!+100! is divided by 12.
 - b) Using divisibility test, find whether the number 457182 is divisible by 11 or not.
 - cc) Solve the congruence $5x \equiv 2 \pmod{26}$.
 - dd) If p is a prime, then prove that $a^p \equiv a \pmod{p}$, for any integer a.
 - ee) For n > 2, prove that $\phi(n)$ is an even integer.
 - ff) Calculate ϕ (5040).
 - gg) If x, y, z is a primitive Pythagorean triple. Then prove that one of integers x and y is even while the other is odd.
 - hh) For the Fibonacci sequence, prove that $g.c.d.(u_n, u_{n+1}) = 1$ for every $n \ge 1$.
 - ii) Express [3, 2, 1, 2, 5, 1] as a rational number.
 - jj) Determine whether the function $f(x, y) = x \sin \frac{y}{x} y \sin \frac{y}{x}$
 - kk) Check the exactness of $y^2 2xy + 6x dx x^2 2xy + 2 dy = 0$
 - 11) Find the integrating factor of the differential equation y(x+y)dx + (x+y-1)dy = 0
 - mm) Find the orthogonal trajectories of x 4y = c
 - nn) Solve $x^2 p^2 y^2 = 0$
 - oo) Solve $y = px + p^3$

PART - B

UNIT-I

- 2. a) Prove that every positive integer n > 1 can be expressed as a product of primes, this representation is unique apart from the order in which factors occur. (6)
 - b) If $N = \sum_{k=0}^{m} a_n 10^k$ is the decimal representation of a positive integer $N, 0 \le a_k < 10$ and $S = a_0 + a_1 + \dots + a_m$, then show that 9 | N if and only if 9 | S.

$$a \equiv b \mod n$$
, then prove that $P(a) \equiv P(b) \mod n$. (6)

c) Solve the following simultaneous congruences $x \equiv 1 \pmod{3}, x \equiv 2 \pmod{5}, x \equiv 3 \pmod{7}$ (6)

- 3. a) Show that the linear congruence ax ≡ b mod n has a solution iff d | b where d = g.c.d.(a, n). Also prove that if d | b then it has 'd' mutually incongruent solutions modulo n.
 (6)
 - b) If $P(x) = \sum_{k=0}^{n} C_k x^k$ is a polynomial with integral coefficients C_k and $a \equiv b \pmod{n}$ then prove that $P(a) \equiv P(b) \mod n$. (6)
 - c) If p is a prime and p | ab then prove that p | a or p | b. (6)

UNIT-II

- 4. a) If n is a positive integer and g.c.d.(a, n) = 1 then prove that $a^{\phi(n)} \equiv 1 \pmod{n}$, where $\phi(n)$ is Euler's function ϕ . (9)
 - b) Prove that the quadralic congruence $x^2 + 1 \equiv 0 \pmod{p}$ (9)
- 5. a) If p is a prime and $p\chi a$ then prove that $a^{p-1} \equiv 1 \pmod{p}$ (6)
 - g) Given integers a, b, c prove that g.c.d.(a, bc) = 1 if and only if g.c.d.(a, b) = 1and g.c.d.(a, c) = 1. (6)
 - h) For each positive $n \ge 1$, show that $n = \sum_{d \nmid n} \phi(d)$, the sum being extended over all positive divisors of *n*. (6)

UNIT-III

- 6. a) If m = qn + r then prove that g.c.d $u_m, u_n = g.c.d u_n, u_r$ (6)
 - b) Prove that any rational number can be written as a finite simple continued fraction. (6)

e) Express
$$\frac{187}{57}$$
 as a finite simple continued fraction. (6)

- 7. a) Prove that radius of the inscribed circle of a Pythagorean triangle is always an integer. (6)
 - b) For $m \ge 1, n \ge 1$, show that U_{mn} is divisible by U_m (6)

c)	If $C_k = \frac{p_k}{q_k}$, is the k^{th} convergent of the simple continued fraction	
	$[a_0, a_1, a_2, \dots, a_n]$ then prove that $p_k q_{k-1} - q_k p_{k-1} = (-1)^{k-1}, 1 \le k \le c$	(6)

UNIT-IV

8. a) Solve
$$3 3x^2 + y^2 dx - 2xydy = 0$$
 (6)

b) Solve
$$\frac{dy}{dx} = y - xy^3 e^{-2x}$$
 (6)

c) Find the orthogonal trajectories of the family of curves given by $r = a(1 + \sin \theta)$ (6)

9. a) Solve
$$y^1 = \cos ecx + y \cot x$$
. (6)

b) Solve
$$y = 6y^2 - x - 1)dx + 2xdy = 0$$
 (6)

c) A certain radio-active substances has a half-life of 38 hours. Find how long it takes for 90% of the radioactivity to be dissipated? (6)

UNIT-V

10. a) Solve
$$x^2p^2 - 5xyp + 6y^2 = 0$$
 (6)
b) Find the general and singular solution of $p^2 + x^3p - 2x^2y = 0$ (6)
c) Solve $x^2 - 1 \ p^2 - 2xyp + y^2 - 1 = 0$ (6)

11. a) Solve $xp^2 - (2x_3y)p + 6y = 0$ (6)

b) Solve
$$xp^2 - 3yp + 9x^2 = 0$$
 (6)

c) Solve
$$xy^{11} \ge y^{1^{-3}} - y^{1} = 0$$
 (6)

Reg. No.

CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2015 MATHEMATICS

PAPER III: FUNCTIONS OF SEVERAL VARIABLES, MULTIPLE INTEGRALS AND GROUP THEORY

Duration: 3 hours

Max Marks: 120

3x10=30

- Note: 1. Answer any TEN questions in Part A. Each question carries 3 marks.
 - 2. Answer FIVE full questions from Part B choosing ONE full question from each unit. PART A

1. a) Find the domain of
$$z = \frac{1}{\sqrt{x^2 + y^2 - 25}}$$

Find the slope of the tangent line to the curve of intersection of the surface b) $z = \frac{1}{2}\sqrt{24 - x^2 - 2y^2}$ with the plane y = 2 at the point 2, 2, $\sqrt{3}$

pp) If
$$f(x, y) = e^x \sin y + \ln xy$$
, find $\frac{\partial^3 f}{\partial x \partial y^2}$

- Find by double integration the area of the region in the xy plane bounded by the qq) curves $y = x^2$ and $y = 4x - x^2$
- Evaluate $\iint_{R} e^{-(x^2+y^2)} dA$, where the region R is in the first quadrant and bounded by the rr) circle $x^2 + y^2 = a^2$ and the coordinate axes.
- Find the area of the surface that is cut from the cylinder $x^2 + z^2 = 16$ by the ss) planes x = 0, x = 2, y = 0 and y = 3.
- Evaluate $\int_0^1 \int_0^{1-x} \int_{2y}^{1+y^2} x dz dy dx$. tt)

uu) Evaluate the line integral
$$\int_{C} 3xdx + 2xydy + zdz$$

where $C: x = \cos t$, $y = \sin t$, $z = t$, $0 \le t \le 2\pi$

- vv) Evaluate the iterated integral $\int_0^{\pi} \int_2^4 \int_0^1 r e^z dz \, dr \, d\theta$
- ww) Show that every group of prime order is cyclic.
- Compute $a^{-1}ba$ where a = (135)(12) and b = (1579)xx)
- Prove that the intersection of two subgroups of a group G is a subgroup of G. yy)
- If N is a normal subgroup of G, then show that $gNg^{-1} = N$ for every $g \in G$ ZZ)

MAT 301.2

aaa) Let G be the group of integers under addition. Prove that $\phi: G \to G$ defined by $\phi(x) = 2x$ is a homomorphism and find its Kernel.

bbb) Define i) Centre of group ii) Automorphism

PART - B

UNIT-I

2. a) Prove that
$$\lim_{(x, y)\to(1, 2)} 3x^2 + y = 5$$
 by applying $\varepsilon - \delta$ definition. (6)

b) If
$$u = x^2 + xy$$
, $x = r^2 + s^2$, $y = 3r - 2s$, find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial s}$ using chain rule. (6)

- c) Find the equation of the tangent plane and the equation of the normal line to the surface $x^2 + y^2 + z^2 = 17$ at the point (2, -2, 3) (6)
- 3. a) Let the function f be defined by

$$f(x, y) = \begin{cases} x^2 + y^2, & \text{if } x^2 + y^2 \le 1 \\ 0, & \text{if } x^2 + y^2 > 1 \end{cases}$$

Discuss the continuity of f. What is the region of continuity of f? (6)

- b) If $f(x, y, z) = y^2 + z^2 4xz$, find the rate of change of f(x, y, z) at (-2, 1, 3) in the direction of the vector $\frac{2}{7}i - \frac{6}{7}j + \frac{3}{7}k$ (6)
- c) If $f(x, y) = x^3 + y^2 6x^2 + y 1$, then determine the relative extrema of f if there are any. (6)

UNIT-II

- 4. a) Find an approximate value of the double integral $\iint_R x^2 + y \, dA$, where R is the rectangular region having vertices P(0, 0) and Q(4, 2). Take the partition of R formed by the lines x=1, x=2, x=3 and y=1. (6)
 - b) Using double integration find the area of the region inside the cardioid $r = 2(1 + \sin \theta)$. (6)
 - c) Find the area of the top half of the sphere $x^2 + y^2 + z^2 = a^2$ using double integration. (6)
- 5. a) Evaluate $\iint_{R} x^2 \sqrt{9 y^2} dA$ where R is the region bounded by the circle $x^2 + y^2 = 9$
 - i) Find the volume of the solid in the first octant bounded by the cone z = r and the cylinder $r = 3\sin\theta$ (6)

(6)

j) Find the area of the paraboloid $z = x^2 + y^2$ below the plane z = 4. (6)

UNIT-III

6. a) Find the volume of the solid above the elliptic paraboloid $3x^2 + y^2 = z$ and below the cylinder $x^2 + z = 4$ (6)

b) Evaluate the line integral
$$\int_{C} \vec{F} \cdot \vec{dR}$$
 where
 $F(x, y) = 2xy\hat{i} + (x - 2y)\hat{j}, C : R(t) = \sin t \hat{i} - 2\cos t \hat{j}, \ 0 \le t \le \pi$ (6)

f) A homogeneous solid in the shape of a right circular cylinder has a radius of 2m and an altitude of 4m. Find the moment of intertia of the solid with respect to its axis.

7. a) Evaluate
$$\int_{0}^{\pi/4} \int_{0}^{a} \int_{0}^{r\cos\theta} r \sec^{3}\theta \, dz \, dr \, d\theta$$
(6)

b) Find the volume of the solid enclosed by the sphere $x^2 + y^2 + z^2 = a^2$ by using spherical coordinates. (6)

c) Evaluate the line integral $\int_{C} x^2 + xy \, dx + y^2 - xy \, dy$ C : the line y = x from the origin to the point (2, 2). (6) UNIT-IV

- c) If H and K are finite subgroups of G of orders O(H) and O(K) respectively, prove that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$
- 9. a) Let G be a group and H be a subgroup of G. For all $a \in G$, prove that $Ha = \{x \in G \mid a \equiv x \pmod{H}\}$ (6)
 - b) Show that every permutation is the product of its disjoint cycles. (6)
 - c) If G is a group in which $(a \cdot b)^i = a^i \cdot b^i$ for three consecutive integers *i* for all $a, b \in G$, show that G is abelian (6)

UNIT-V

10. a) Prove that a subgroup N of a group G is a normal subgroup of G if and only if the product of any two right cosets of N in G is again a right coset of N in G. (6)

b) If G and Ḡ are groups and φ: G → Ḡ is a homomorphism. Prove that
(i) φ(e) = ē, where e and ē are identities in G and Ḡ respectively.
(ii) φ(x⁻¹) = φ(x) ⁻¹ ∀ x ε G (6)

- c) Prove that the set of all automorphisms of a group G is a group. (6)
- 11. a) If G is a group and N is a normal subgroup of G, then prove that G/N is also a group. (6)
 - b) Prove that a homomorphism of G onto \overline{G} with kernel K is an isomorphism of G onto \overline{G} if and only if $K = \{e\}$. (6)

c) Prove that S_n has a normal subgroup of index 2, the alternating group A_n consisting of all even permutations. (6)

Let G be the group of all positive real numbers under multiplication and G' be the group of oall real numbers under addition. Define $\phi: G \to G'$ by $\phi(x) = \log_{10} x$. Show that ϕ is a homomorphism.

PART - B

- UNIT-I
- By using $\varepsilon \delta$ definition, prove that $\lim_{(x,y) \to (1,3)} 2x + 3y = 11$ 2. a)
 - b) The temperature at any point (x, y) of a rectangular plate lying in the xy plane is determined by $T(x, y) = x^2 + y^2$.
 - Find the rate of change of the temperature at the point (3, 4) in the direction (i) making an angle of radian measure $\frac{1}{2}\pi$ with the positive x direction.
 - (ii) Find the direction for which the rate of change of the temperature at the point (-3, 1) is a maximum. (6)
 - Find an equation of the tangent line to the curve of intersection of c) $x^{2} + y^{2} - z = 8$, $x - y^{2} + z^{2} = -2$ at the point (2, -2, 0).

3. a) Let f be a function defined by
$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{if } (x \ y) \neq (0, 0) \\ 0 & \text{if } (x \ y) = (0, 0) \end{cases}$$

find $f_{12}(0, 0)$ (6)

find
$$f_{12}(0,0)$$

- Given u = xy + xz + yz, x = r, $y = r \cos t$, $z = r \sin t$, find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial t}$ b) (6) using chain rule.
- If $f(x, y) = 2x^4 + y^2 x^2 2y$ determine the relative extrema of f if there are any. (6) c)

UNIT-II

- Find an approximate value of the double integral $\iint (2x^2 3y) dA$, where 4. R is the rectangular region having vertices (-1, 1) and (2, 3). Take a partition of R formed by the lines x=0, x=1 and y=2 and take (ξ_i, γ_i) at the center of the ith sub region. (6) Find the volume of the solid in the first octant bounded by the two cylinders b)
 - $x^{2} + y^{2} = 4$ and $x^{2} + z^{2} = 4$. (6)
 - Find the area of the paraboloid $z = x^2 + y^2$ below the plane z = 4. c)
- Find the volume of the solid bounded by the surface $f(x, y) = 4 \frac{1}{9}x^2 \frac{1}{16}y^2$, the planes 5. a) (6) x = 3 and y = 2 and the coordinate planes.

b) outside the circle r = a

c) Find
$$\int_{1}^{4} \int_{y^{2}}^{y} \sqrt{\frac{y}{x}} dx dy$$

(6)

(6) (

(

(6)

(+

()

UNIT-III

- Find the volume of the solid bounded by the cylinder $x^2 + y^2 = 25$, the plane x + y + z = 8a) 6. and xy plane, using triple integrals (6)
 - Suppose a particle moves along the parabola $y = x^2$ from the point (-1, 1) to the point **b**) (2, 4). Find the total work done if the motion is caused by the force field $F(x, y) = (x^2 + y^2)\hat{i} + 3x^2y\hat{j}$. Assume that the arc is measured in meters and the force is measured in newtons.
 - A homogeneous solid is bounded above by the sphere $\rho = a$ and below by the cone, c) $\phi = \alpha$, $0 < \alpha < \frac{1}{2}\pi$. Find the moment of inertia of the solid about the z – axis.
- 7. a) that the arc is measured in meters and force is measured in newtons.

b) Evaluate
$$\int_{-1}^{0} \int_{e}^{2e} \int_{0}^{\frac{\pi}{3}} y \ln z \tan x \, dx \, dz \, dy$$

Find the volume of the solid bounded by the paraboloid $x^2 + y^2 + z^2 = 12$ and the plane z = 8 using cylindrical coordinates.

UNIT-IV

- If H is a non empty finite subset of G and H is closed under multiplication then prove 8. a) that H is a subgroup of G.
 - If G is a finite group and H is a subgroup of G, then show that $O(H) \mid O(G)$.
 - c) $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}.$
- In a group G, define normalizer N(a) of $a \in G$ and prove that it is a subgroup of G. (6) 9. a) If G is a group and H is a subgroup of G, then show that the relation $a \equiv b \pmod{H}$ b) (6) is an equivalence relation. Let H and K be two subgroups of a group G. Prove that HK is a subgroup of G c) (6) if and only if HK = KH.

Find by double integration the area of the region inside the cardioid $r = a(1 + \cos \theta)$ and (6)

(6)

(6)

A particle transverses the twisted cubic $\vec{R}(t) = t\hat{i} + t^2\hat{j} + t^3\hat{k}$, $0 \le t \le 1$. Find the total work done if the motion is caused by the force field $\vec{F}(x, y, z) = e^{x}\hat{i} + xe^{z}\hat{j} + x\sin\pi y^{2}\hat{k}$. Assume (6)

(6)

(6)

(6) (6)

If H and K are finite subgroups of G of orders O(H) and O(K) respectively, prove that (6)

P.T.O.

UNIT-V Prove that N is a normal subgroup of G if and only if $gNg^{-1} = N$ 10. a) for every $g \in G$. (6) If ϕ is a homomorphism of a group G onto \overline{G} with Kernel K, then b) prove that $\frac{G}{\kappa}$ is isomorphic to \overline{G} . (6) c) Prove that the kernel of a homomorphism is a normal subgroup of group G. (6) Define centre of a group. Prove that it is always a normal subgroup. 11. a) (6) b) Let G be any group, define $\tau_{\sigma}: G \to G$ by $\tau_{\sigma}(x) = g^{-1}xg$. Prove that τ_{q} is an automorphism. (6) Prove that the subgroup N of G is a normal subgroup of G if and only if every left c) (6) 1 coset of N in G is a right coset of N in G. ******* 1

MAT 301.2 Reg. No. **CREDIT BASED THIRD SEMESTER B.Sc. DEGREE EXAMINATION OCTOBER 2016** MATHEMATICS PAPER III: FUNCTIONS OF SEVERAL VARIABLES, MULTIPLE INTEGRALS AND **GROUP THEORY Duration: 3 hours** Max Marks: 120 Note: 1. Answer any TEN questions in Part A. Each question carries 3 marks. 2. Answer FIVE full questions from Part B choosing ONE full question from each unit. PART A 3x10=30 1. a) Find the domain of $f(x, y) = \frac{\sqrt{25 - x^2 - y^2}}{x^2 - y^2}$ b) If $f(r,\theta) = r \tan \theta - r^2 \sin \theta$ find $f_2(3,\pi)$ c) If $f(x, y) = x^2 - 4y$, find $\nabla f(-2, 2)$. d) Evaluate $\int_0^4 \int_0^y \sqrt{9 + y^2} dx dy$ Find the volume of the solid in the first octant bounded by the cone z = r and the cylinder e) $r = 3\sin\theta$ Find the area of the surface cut from the plane 2x + y + z = 4 by the planes x = 0, x = 1, f) y = 0 and y = 1. Evaluate $\iiint xy \sin yz \, dV$ if S is the rectangular parallelpiped bounded by the planes g) $x = \pi$, $y = \frac{1}{2}\pi$, $z = \frac{1}{3}\pi$ and the coordinate planes. Evaluate the line integral $\int (x^2 + xy) dx + (y^2 - xy) dy$, C : the line y = x from the origin to h) the point (2, 2)Evaluate the iterated integral $\int_{0}^{\frac{\pi}{4}} \int_{0}^{2\sigma \cos \phi} \int_{0}^{2\pi} \rho^{2} \sin \phi \, d\theta \, d\rho \, d\phi.$ i) If G is a finite group and $a \in G$, then prove that $a^{0(G)} = e$. i) If H and K are subgroups of G and $O(H) > \sqrt{O(G)}$ and $O(K) > \sqrt{O(G)}$, then prove that k) $H \cap K \neq (e)$. Find the order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix}$ m) If G and G' are groups and $\phi: G \to G'$ is an isomorphism, then show that ker $\phi = \{e\}$, where e is the identity in G.

Show that the intersection of two normal subgroups of G is a normal subgroup of G. n)

()

~ `